getpdf

Modulation and Stabilization of Silk Fibroin-Coated Oil-in-Water Emulsions

Jia-Jia Rao1*, Zhong-Min Chen1 and Bing-Can Chen2


1College of Bioengineering, Chongqing Institute of Technology, CN-400050 Chongqing, PR China

2College of Food Science, Southwest University, CN-400715 Chongqing, PR China

Article history:

Received November 11, 2008
Accepted June 16, 2009

Key words:

silk fibroin, corn oil, emulsion, stability, pH

Summary:

The purpose of this study is to prepare and characterize stable oil-in-water emulsions containing droplets coated with silk fibroin. Silk fibroin, a native edible fibrous protein originating from silkworm cocoons, was used to prepare 10 % (by mass) corn oil-in-water emulsions at ambient temperature (pH=7.0, 10 mM phosphate buffer). Emulsions with relatively small mean particle diameter (d32=0.47 mm) and extremely good creaming stability (>7 days) could be produced at silk fibroin concentration of 1 % (by mass). The influence of pH (2–8), thermal processing (60–90 °C, 20 min), and concentration of salt (c(NaCl)=0–250 mM) on the properties and stability of the emulsions was analyzed using ζ-potential, particle size, and creaming stability measurements. The isoelectric point of droplets stabilized with silk fibroin was pH~4. The emulsions were stable to droplet flocculation and creaming at any pH except intermediate value (pH=4.0) when stored at room temperature, which was attributed to their relatively low ζ-potential. Their ζ-potential went from around 25 to –35 mV as the pH was increased from 2 to 8. The emulsions were also stable to thermal treatment (60 and 90 °C for 20 min, pH=3 and 7), with a slight decrease in the magnitude of ζ-potential at temperatures exceeding 60 °C. The emulsions were unstable to aggregation and creaming even at relatively low salt concentrations (c(NaCl)=0–250 mM, pH=3 and 7) as a result of electrostatic screening effects. These results suggest that bulk oil stabilized with silk fibroin has improved physical stability and may provide a new way of creating functional oil products and delivery systems.

 


*Corresponding author:    jiajiarao@gmail.com

Search FTB


Follow us


 facebook 1 twitter bird_icon

 

QR Code


qrcode

We use cookies to improve our website and your experience when using it. Cookies used for the essential operation of the site have already been set. To find out more about the cookies we use and how to delete them, see our privacy policy.

I accept cookies from this site.

EU Cookie Directive Module Information