FTO Gene Polymorphisms at the Crossroads of Metabolic Pathways of Obesity and Epigenetic Influences

Ana-Marija Popović¹, Ana Huđek Turković², Kristina Žuna²#, Višnja Bačun-Družina², Ivica Rubelj³* and Martina Matovinović⁴#

¹General Hospital Gospić, Kaniška 111, 53000 Gospić, Croatia
²Faculty of Food Technology and Biotechnology University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
³Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
⁴Clinical Hospital Centre Zagreb, Kišpatićeva 12, 10000 Zagreb, Croatia

Received: 6 December 2021
Accepted: 9 November 2022

SUMMARY

In this review, we summarize the current state of knowledge on the fat mass and obesity-associated (FTO) gene and its role in obesity. The FTO encoded protein is involved in multiple molecular pathways contributing to obesity as well as other metabolic complexities. This review emphasizes the epigenetic influence on the FTO gene as a new approach in the treatment and management of obesity. Several known substances have a positive effect on reducing FTO expression, depending on the polymorphism of a single nucleotide (SNP) also changes gene expression. Implementing environmental changes could lead to reduced phenotypic manifestation of FTO expression. Treating obesity through FTO gene regulation will have to include various complex signal pathways in which FTO takes part. Identification of FTO gene polymorphisms may be useful

*Present address: Department of Biomedical Sciences, Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, Vienna, Veterinärplatz 1, 1210 Wien

*Corresponding authors:
Phone: +385989338565
E-mail: Ivica.Rubelj@irb.hr
Phone: +38598647464
E-mail: mmatovin@kbc-zagreb.hr
for the development of individual obesity management strategies, including the recommendation of taking certain foods and supplements.

Keywords: obesity; FTO gene; single nucleotide polymorphisms; epigenetic influence

INTRODUCTION

The World Health Organization (WHO) defines obesity as an excessive or abnormal increase in fat mass with a body mass index (BMI) ≥ 30 kg/m² and a causal factor in development of health problems such as diabetes mellitus, cardiovascular diseases and various types of cancer (1). Over 1.9 billion adults were overweight of which more than 650 million people were obese in 2016 and that number is expected to increase to 1.12 billion by 2030. The problem increases if obesity occurs at an early age. The fact that in 2020 there were 39 million obese children further emphasizes the seriousness of the problem (2). This has become a major problem in both developed countries as well as developing countries.

Environmental factors such as physical inactivity, stress, low-nutrient diets, and various microbial and chemical exposures contribute to the development of obesity (3,4). Obesity is not only a result of environmental factors, but also of individual genetic predispositions (5). Between 30 and 70 % of common obesity is hereditary (3). Some of the gene-dependant types of obesity are monogenic, syndromic, oligogenic, and polygenic obesity. The underlying mechanism behind polygenic obesity is complex, with complicated interactions between genes themselves and gene-environment interactions. Other types of gene-dependant obesity are very rare, with monogenic obesity depending only on genetic influences (6).

Previous genome-wide association studies revealed a relationship between the FTO gene and obesity. Changes particularly located in the cluster of single nucleotide polymorphisms (SNPs) in the first intron of the FTO gene, for example, rs9930506, were associated with the changes in BMI. The cluster of SNPs on chromosome 16 includes rs9939609 and rs9926289, which are found in an intronic region of the FTO gene that is highly conserved across species (7). This research includes epigenetic influences on FTO variants and reports a combined impact of environmental factors such as life-style and food consumption. The aim of this review is to report new mechanisms affecting FTO expression and to reveal new personalized paths in treating obesity that could be scaled globally. Since the treatment of obesity in most cases includes the treatment of other diseases, there is a need to find a common approach with an emphasis on epigenetics.
FTO PROTEIN

Molecular function and structure

The *FTO* gene is located on the long arm of chromosome 16, in the region 16q12.2. It is over 400 kb long and contains 9 exons and 8 introns (8). Sequence analysis has shown that the FTO protein has a double-stranded beta helix fold (9). The crystal structure of the FTO protein reveals Fe (II) and alpha-ketoglutarate dependent activity at the N-terminus of the FTO. The product of the *FTO* gene is the fat mass and obesity associated protein, the first identified RNA demethylase. The FTO protein is composed of a N-terminal domain (NTD, amino acid residues 32 – 326) known to have oxygenase/demethylase activity, and a C-terminal domain (CTD, amino acid residues 327 – 498) whose function is primarily manifested in the stabilization of the NTD structure (10–12). It was recently reported that the function of the C-terminal domain may involve interaction with other proteins in order to provide specific interactions for gene regulation. The FTO protein is an alpha-ketoglutarate dependent oxygenase with a conserved jelly-roll motif. Unlike other proteins in the same family, such as alpha-ketoglutarate-dependent dioxygenase (AlkB), this protein has an extra loop covering one side of its structure which plays an important role in selection of the FTO against double-stranded nucleic acids (10). Another difference between the FTO and AlkB is that FTO contains a C-terminal end and has a K216 residue (lysine) located on a long loop named the "FTO unique loop" (11). The RNA binding protein splicing factor proline and glutamine rich (SFPQ) enables selection and demethylation of specific FTO substrates. The activity of the *FTO* gene and demethylation pathway of FTO substrates are described in Fig.1. As SFPQ is located close to RNA binding sites, it create bonds with the CUGUG motif, engages FTO, and promotes proximal N⁶-methyladenosine (m⁶A) demethylation (13).

Further analysis of FTO revealed two glutamine residues Q86 (substrate sequence recognition) and Q306 (binding affinity) located on its short loop. Mutation of glutamines into lysines resulted in a stronger binding affinity of *FTO* towards ssDNA. Moreover, double mutation of glutamine residues results in an even stronger binding affinity, ~ 16-fold increase in comparison to wild-type *FTO*, while mutations in the catalytic pocket decrease the binding affinity. The catalytic pocket stabilises the methyl group through interactions between hydrogen bonds with residues R96 (N¹ atom) and E234 (N⁶, N⁷ atom) (11). If polymorphisms are located at sites important for activity and function, they could affect the binding affinity and thereby contribute to obesity by upregulating other genes.
FTO demethylases 1-methyladenine (1-meA), 1-methylguanine (1-meG), 3-methylcytosine (3-meC), and 3-methylthymine (3-meT) on single-stranded nucleic acids (14). In RNA, FTO can demethylase 3-methyluracil (3-meU) and N6-methyladenosine (m6A) (9). The FTO has a 50-fold greater affinity for m6A than for 3-meU. 3-meU is mainly found in ribosomal RNA (15), whereas m6A is found in mRNA.

The function of FTO manifests as demethylase activity at the most prevalent RNA modification, N6-methyladenosine (m6A), normally located around the 3' UTR region and stop codon (16), thereby regulating the expression of certain target genes. The well-established mechanism of epitranscriptomic modification includes writers: methyltransferase like 3 (METTL3) and methyltransferase like 14 (METTL14), erasers (FTO) and alpha-ketoglutarate-dependent dioxygenase AlkB homolog 5 (AlkB5) and readers YTH N6-Methyladenosine RNA Binding Protein 2 (YTHDF2) and YTH N6-Methyladenosine RNA Binding Protein 3 (YTHDF3).

Recent studies have revealed new insights into demethylation activity and substrate binding with even m6A being considered an FTO substrate, however evidence points to a new substrate of FTO, N6, Z'-O-dimethyladenosine (m5A_m), which has 100-fold greater demethylation activity. These 2 substrates share structural similarities as they both have a methyl group on the sixth carbon atom of adenine ring. Transcripts that have m5A_m are protected from degradation by the mRNA-decapping enzyme 2 (DCP2) enzyme because m5A_m displays greater resistance to DCP2 and it is located in m7G on 5' end of the mRNA (17). As mentioned previously, mutations within the catalytic pocket decreases binding affinity, whereas mutations of the E234 residue responsible for engagement with the N6 atom showed no significant changes in binding activity. It is therefore a reasonable assumption that the substrate specificity is a result of intervention between the nucleobase and residues within the catalytic pocket (11).

The FTO is localized in the nucleus and it is thought to demethylate m6A during transcription and make changes before the mRNA is exported to the cytoplasm (14,18). A recent study reported that FTO was also found in the cytoplasm in a tissue specific manner. The FTO protein was found in the cytoplasm of cells of adipose tissue, pancreas, liver and salivary glands as analysed by Western blot analysis. Pancreatic FTO protein was found only in islets of Langerhans, which could be associated with glucose intolerance. It was also reported that FTO correlates with age, observing a decrease in the FTO protein levels in skeletal muscle when comparing neonates and 11-month-old pigs. Decreased levels of FTO were also found in the thyroid gland and adipose tissue (19). FTO
regulates expression through transcription activity of neighbouring genes and acts directly or indirectly on various signal pathways (e.g. mTORC1, AMPK).

All reported results elucidate FTO function and substrate binding while suggesting substantial FTO activities. However, more detailed studies are needed in order to precisely determine the exact molecular regulation and physiological mechanism that FTO exhibits in gene regulation.

FTO gene expression

The FTO is an ubiquitously expressed gene, as demonstrated by studies in both laboratory rats and humans (20-21). Although FTO is mainly expressed in the cytoplasm of the cell, it has been found to be expressed in nuclear speckles as well (22). Because of its N-terminal domain, the FTO protein is able to shuttle between the nucleus and cytoplasm by binding to the exportin protein XPO2 (23).

Fto expression in rodents

Increased Fto expression in mice leads to obesity via hyperphagia. Mice with three or four copies of the Fto gene showed increased food intake and body weight regardless of the mice were fed with a high-fat diet. Mice with increased Fto expression developed glucose intolerance when fed with a high-fat diet (24).

Germline knockout of the Fto gene in mice results in growth retardation, a leaner phenotype, and increased energy expenditure (25-26). However, in adult mice, loss of Fto expression resulted in normal growth but reduced lean mass and increased fat mass (25). Levels of the Fto are highest in the central nervous system, particularly in the feeding-related nuclei in the hypothalamus (27). Deletion of the Fto in central nervous system (CNS) of mice resulted in an increase in daily energy expenditure accompanied by physical changes, consistent with the role of the Fto in hypothalamus involved in regulation of food intake. Another finding of this study is that specific Fto knockout mice had lower bone density than control mice (28), while overexpression of the Fto gene causes obese or overweight mice (27,29).

Homozygous deletion of Fto in mice leads to death during embryonic development with severe malformations of the head and neck, while heterozygotes exhibit malformations such as fused fingers and enlargement of the thymus (30). Specific deletion of the Fto in central nervous system (CNS) has
a similar phenotype as well as does a whole body deletion (reduced adipose tissue, increased food consumption) however it retains the same effect for postnatal development (29). Mouse models of Fto deficiency show its importance in neural development and retardation. An example is Fto-/- null mice with a complete lack of Fto protein which results in weight loss by 30–40 %, stunted growth and early death (29-30). The amino acid substitution mutation FtoI367F (isoleucine to phenylalanine at position 367) leads to a decrease in catalytic protein activity with a 10% reduction in body weight in adulthood. Only mice with complete protein deficiency manifest growth retardation and death, indicating that partial Fto function is sufficient to abrogate the phenotype observed in Fto null mice (Fig. 2) (30).

Energy balance is regulated by the brain, specifically the hypothalamus, which implies that FTO plays an important role in regulating metabolism and eating habits (31). However, it is still unknown in which way FTO influences the changes in neuronal activity, either directly through changes in FTO expression or indirectly by influencing the release of messenger molecules and/or hormones from cells (22). McTaggart et al. (22) found that in mice, Fto levels are relatively uniform in regions of the hypothalamus, cerebellum, and rostral brain, and are higher in the brain than in the lower skeletal muscles.

FTO gene expression in the brain was also determined after various periods of fasting by measuring mRNA and protein levels. In rats, fasting for 48-hours resulted in an overall increase in mRNA and protein levels in the hypothalamus, but not uniformly in all regions (32). However, some studies found that >40-hour fast in mice did not significantly alter mRNA levels (33) or decrease in the hypothalamus (14). Short term fasting (16h) in mice reduced mRNA levels in the hypothalamus (34).

Current studies have shown that the number of calories and amount of ingested macronutrients can influence FTO expression in the hypothalamus. However, FTO is thought to have many functions in the hypothalamus, so the exact relationship between intake of specific macronutrients and optimal changes in FTO expression to maintain a healthy weight is not yet known (35).

The FTO gene is also expressed in adipose tissue. A 2015. study showed that FTO affects fat mass accumulation by regulating adipocyte differentiation in vivo, as demonstrated by experiments with mice overexpressing the Fto gene and mice in which the Fto gene was deleted (36).

FTO expression in humans
In 2013, Bravard et al. (37) studied the expression of FTO in subcutaneous and omental adipose tissues in lean (mean BMI 24.7 kg/m²) to moderately obese women (mean BMI 25.8-26.5 kg/m²). FTO expression was higher in omental versus subcutaneous adipose tissue. Expression in subcutaneous tissue was associated with insulin sensitivity, and expression in omental adipose tissue with adiposity. One study found that FTO expression was higher in separated and isolated adipocytes than in subcutaneous adipose tissue, implying that FTO expression is higher in adipose tissue than in the stromalvascular cells (33).

Recent studies in mice (14,22,32–34) have also shown FTO expression in brain, especially in the hypothalamus. In humans, FTO is also highly expressed in the regions of the hypothalamus, particularly in its arcuate, paraventricular, dorsomedial and ventromedial nuclei (14), which are associated with the regulation of appetite and energy metabolism. FTO expression in these nuclei may vary, possibly due to different FTO genotypes (38), but the differences could also occur due to various exercise habits between individuals. A previous study in mice has demonstrated that exercise training can lead to weaker association between FTO and the development of obesity (39). Some in vivo studies on human brains were performed using functional magnetic resonance imaging and found that FTO expression is higher in the prefrontal cortex after food intake (40). Homozygous carriers of the FTO rs9939609 risk allele A showed different results when examined with functional magnetic resonance imaging (fMRI) due to a decrease in ghrelin concentrations upon food intake (41). However, there are few studies of FTO expression in the human brain (in vivo or post-mortem), that could shed light on how FTO expression becomes altered in the brain in relation to food intake or different FTO genotypes.

Furthermore, FTO is expressed in skeletal muscle cells, but its expression is not associated with fat percentage or BMI, and is positively associated with glucose oxidation rate and expression of genes involved in oxidative phosphorylation (42). FTO is also expressed in the human placenta and may play a role in the regulation of fetal body mass, but is not associated with the placental SNP rs9939609 (43).

Physical intervention and special diet in obese individuals resulted in a reduction in anthropometric measurements along with an increase in FTO expression and a positive correlation with increase in fat-free mass (44). In previously reported studies, increased FTO expression is associated with weight gain and higher BMI. However, the FTO SNPs that affect metabolism, could be epigenetically influenced in several ways, so further studies should include genotype as one of the most important variables in epigenetic evaluation.
A previously unknown function of the *FTO* is the newly reported role in osteoporosis, as in humans *FTO* in rs1121980 variant is associated with risk of hip fracture (45). FTO activity speaks in favour of the fact that there may be hidden novel mechanisms. These findings suggest an important physiological role in both the brain and other tissues related to metabolic mechanisms. As it appears, a complete loss of FTO is required for damage to osteoblast function. FTO has been shown to be essential for muscle and thyroid function as the lack of enzymatic activity at key sites in the DNA repair pathway makes cells more susceptible to damage and apoptosis (46). A schematic illustration of *FTO* expression or defect in humans and mice summarizing its main roles is shown in Fig. 2.

Loss of function in humans results from the R316Q mutation, arginine to glutamine substitution (Arg316Glu), phenotypically represented with severe brain malformations, psychomotor delay, and functional brain defects, postnatal psychomotor delay, facial and brain dimorphism, cardiac and genital defects (30). This recessive autosomal mutation with lethal syndrome is the result of a catalytically inactive protein. Fibroblasts obtained from affected families displayed reduced proliferation and hastened senescence (26,47). Loss of function mutation in humans are equally represented as in *Fto* (*Fto*−/−) null mice (29). In addition to retardation, R316Q mutation-affected individuals have CNS abnormalities and defects in the cardiovascular system (30).

Functional role of *FTO* gene polymorphisms in metabolic pathology through interaction with other genes

The interaction of the *FTO* gene SNPs with the iroquois homeobox 3 (*IRX3*) and iroquois homeobox 5 (*IRX5*), genes also associated with the development of obesity and an effector of the *FTO* variants (48), may jointly regulate adipogenesis and cause white adipose tissue browning in mice (49).

The rs1421085 *FTO* polymorphism disrupts a conserved motif for AT-rich interaction domain 5B (ARIDB5) repressor binding, resulting in increased gene expression of *IRX3* and *IRX5* which encode proteins involved in adipocyte differentiation. Increased expression of *IRX3* and *IRX5* leads to development of white adipocytes that store energy (50). Also, rs1421085 allele C and rs8050136 allele A have reduced affinity for cut like homeobox 1 (*CUX1*). The rs8050136 displayed decreased affinity for the P110 isoform of CUX1, which should increase transcription of the *FTO* and retinitis pigmentosa GTPase regulator-interacting protein-1 like (*RPGRIP1L*) genes. The P110 isoform is expressed in hypothalamus and, when the rs8050136 variant A is present, activation of *FTO* and
RPGRIP1L is reduced (50-51) and therefore leads to an impaired cellular response to leptin. The RPGRIP1L encodes a protein expressed in cilia. Cilia are organelles in eukaryotes, present in various tissues, including brain, hippocampus and hypothalamus, and belong to the leptin receptors isoform β grouping. Interactions between the FTO SNPs and neighbouring genes are described in Fig. 3.

The rs8050136 FTO polymorphism is in a haplotype with increased DNA methylation containing High Conserving Non-Coding Elements (HCNE), which is actually a long-range enhancer (52). Alterations in that region can affect many tissues because the FTO interacts with various genes. Notably, FTO gene has many enhancers within which there are different variants of FTO gene that have an effect on tissues or transcription levels.

The rs9939609 FTO polymorphism is associated with obesity, with more pronounced features as the risk allele increases. Furthermore, it is likely to assume that higher levels of methylation allow for a stronger influence of polymorphism. Namely, the AA genotype has a higher risk of obesity along with higher FTO methylation levels, compared to the same genotype but with lower levels. Also, higher methylation levels in the risk allele carriers are associated with shorter telomeres (53). Thus, it can be concluded that methylation plays an important role in FTO gene expression. However, the influence of the polymorphism itself on other obesity-related genes has also been reported.

Indirect regulation of lipid metabolism is evident in the interaction of the FTO gene with the Runt-related transcription factor 1 (Runxt1) gene. Splicing regulatory proteins (Srsf) are responsible for formation of a long isoform of the Runxt1 gene. Srsf binding factor overlaps with the substrate of the FTO. Under these conditions, Runxt1-L (long form) containing exon 5, 6, 7 is not translated. When FTO removes methyl group from exon 6, Srsf skips exon 6 and the shorter isoform, Runxt1-S isoform, which is responsible for adipogenesis, is formed (Fig. 4a) (54).

Due to the possibility of binding to the CAAT (CAAT Enhancer Binding Proteins – CAAT EBP) protein family, the FTO gene participates in adipogenesis and modulates hypothalamic expression (28). CAAT proteins are transcription factors that can enhance binding activity to promoter regions and thereby regulate the expression of genes involved in adipogenesis (CEBP delta) or in fat cell differentiation (CEBP beta) (55). The FTO gene affects CEBP delta transcription by demethylating N6-methyldeoxyadenosine in the promoter of this gene (Fig. 4b) (56).

Another potential regulatory mechanism associated with obesity and diabetes mellitus type 2 (DMT2) is a methylenetetrahydrofolate reductase (MTHFR) gene polymorphism. The MTHFR gene is located at 1p36.3, which correlates with neural tube defects, methylenetetrahydrofolate reductase deficiencies, and vascular disease. The substitution of cytosine to thymine on nucleotide 677 causes
exchange of amino acid 222 from alanine to valine, also known as C677T mutation (57). Such substitution results in the inability to catalyse 5, 10’ methylenetetrahydrofolate to 5’ methylenetetrahydrofolate due to high enzyme thermolability. The decreased enzyme activity is manifested by elevated homocysteine (Hcy) and reduced folate levels (58). Elevated Hcy levels have been associated with obesity as well as DMT2. A meta-analysis confirmed the correlation between C677T polymorphism and obesity. Moreover, obese participants had elevated Hcy levels with even higher levels when the risk allele was present (59). In addition, another study reported that cumulative effect of LEP (leptin), MTHFR and FTO risk genotypes contributed to the highest BMI levels in humans (60).

SNPs and connection to obesity

Although many studies found that FTO gene polymorphisms are associated with FTO gene expression (7,41,61), there are many studies that reported that FTO gene polymorphisms are associated only with genes related to adipogenesis and not with FTO gene expression itself (42,62). This indicates that FTO has the ability to modulate genes besides itself through polymorphisms.

For example, Grunnet et al. (42) found that the FTO expression was not associated with the FTO rs9939609 genotype, neither in human skeletal nor adipose tissues. Similarly, Smemo et al. (62) discovered that obesity-associated SNPs were not associated with FTO expression, but with the transcription factor iroquois-class homeobox gene 3 (IRX3) gene and its expression in hypothalamic pro-opiomelanocortin neurons. IRX3 gene expression level influences obesity by changing energy consumption and food intake (63-64).

The genotype FTO rs9939609 (T/A) has been found to be connected with increased expression of FTO and the hormone ghrelin which regulates digestive behaviour, and its increased expression leads to increased intake of dense food (food that has a higher number of calories per serving) (41). Sentinelli et al. (61) conducted a study with obese Italian individuals and found a strong positive relation between the FTO rs9939609 and rs9930506 SNPs and their BMI. Similarly, Scuteri et al. (65) found that the rs9930506 GG was associated with BMI and total body mass in more than 4000 subjects. The FTO rs9939609 risk variant was associated with brain malformations and structural atrophy. On the other hand, complete deficiency of FTO was lethal in humans (47). Higher BMI is associated with reductions in hippocampi (66) global brain volume (67).

Polymorphisms associated with the FTO gene usually affect satiety responses, eating in absence of hunger, and loss of control (LOC) when overeating. LOC is accompanied by a daily
increase in food intake and reduced feelings of satiety. This phenotype is observed in SNP risk allele carriers. For example, for the FTO rs9939609 polymorphism, postprandial satiety is reported to be 17.2 % lower in risk allele carriers (68). Furthermore, the risk allele A was associated with eating in absence of hunger, however there was no connection with living conditions (69). A summary of the characteristics of each FTO polymorphism indicating expected phenotypic traits in risk allele carriers is provided in Table 1 (35, 41, 47, 49, 50, 52, 61, 65, 68-81).

The influence of rs9939609 SNP on LOC is reported to be in 34.7 % AA/AT subjects and in 18.2 % TT (72). These results suggest that risk allele carriers have an impact on assessing fullness, as in these studies, risk allele carriers have consumed more energy from fat. Another reason may be, that the FTO polymorphisms affect neural responses when we consider physical expression. To support these statements, many studies have linked rs9939609 with an increase in fat intake. A 3-day study in children (73) reported higher total energy intake and higher fat intake without significant effects on carbohydrate and protein. Another study reported similar results in which they observed increased fat intake in risk allele carriers (74). A correlation between increased fat intake and A allele was also observed (75). One study reported increased protein intake in individuals with rs9939609 variation (77). The results of these studies strengthen the evidence for the influence of FTO polymorphisms on energy homeostasis and feeding behaviour. In a study by Hoed et al. (71) on postprandial satiety with the rs9939609 variation, results showed an important connection between postprandial responses and lower satiety in individuals with the risk allele (Table 1). In rs9939609 risk allele carriers, there are differently methylated sites associated with different genes involved in regulation of telomere length, nuclear factor kappa light chain enhancer of activated B cells (NF-κB) activity, and transcriptional regulation (82).

A similar effect on energy metabolism is observed in FTO rs8050136 risk allele A where it is correlated with higher energy expenditure from fat and lower from carbohydrates (76) and associated with higher total energy intake (75). One study reported higher protein intake, while others reported higher fat intake with weak or no effect on carbohydrate and fibre intake, suggesting that the main rs9939609 FTO polymorphism effect is higher fat and totally energy intake with reduced postprandial satiety. Incorporating all these results, it is evident that polymorphisms play an important role in functionally effecting hunger and satiety response, although the mechanisms are not yet fully identified.

FTO expression in the hypothalamus may compromise food intake and the satiety response. Modulating energy homeostasis with recognition of essential amino acid deprivation and an additional
direct impact in adipogenesis contribute to \textit{FTO} overexpression. In support of this, there is a positive correlation between \textit{FTO} expression and increased BMI, but no association between energy expenditure and physical activity (24), and increased levels of \textit{FTO} mRNA and adiposity (83).

Obesity is highly associated with dyslipidaemia and increased risk of cardiovascular disease (CVD), with the possibility of an \textit{FTO}-mediated effect on lipids. The research of Dorling \textit{et al.} (84) revealed no effect of rs9939609 on lipids. In contrast, the results of Doney \textit{et al.} (79) found an association between the risk allele rs9939609 and higher triacylglycerol (TG) levels. The main difference between these two studies is that in the study that found no association with lipids and polymorphisms, samples were collected shortly after eating and then measured. Study design limitation could lead to differences in the results, as lipid concentrations may have taken longer to change in a way that could contribute to vascular disease. Also, with respect to altered lipid concentrations, the time period over which lipids were altered should be considered. A large meta-analysis has confirmed the association with the rs9939609 A variant and CVD (85). Future studies should include more laboratory tests, larger samples and multiple genotyping with various epigenetic factors such as lifestyle to better understand this complex mechanism and possibly discover new variants.

Thus, most studies indicate that certain \textit{FTO} gene polymorphisms affect appetite change and food intake leading to weight gain and obesity. A higher consumption of certain food may be associated with a particular polymorphism. Individuals caring the \textit{FTO} rs9930506 risk variant are expected to have higher levels of protein and carbohydrate intake with an upregulation of \textit{FTO} and downregulation of \textit{IRX3} expression (86). According to these findings, it is possible to conclude that a particular polymorphism can cause a change in dietary habits and expression which leads to obesity development. Indeed, lifestyle changes in the form of food intake and physical activity alter the previous influence of diet impact in risk allele carriers (87). A recent study confirmed that individuals with extra weight and \textit{FTO} rs9939609 risk genotype had higher levels of BMI, total cholesterol, insulin, high-density lipoprotein (HDL), and homeostatic model assessment for insulin resistance (HOMA-IR) (80). Another study reported an association with fatty acid intake and \textit{FTO} expression in adipose tissue (88). In addition, a recent study reported a 2.5-fold higher risk of overweight or obesity when having a high dietary-induced inflammation index (DII) in carriers rs9939609 risk allele, along with other complexes (89). All this suggests there are consequences of diet type and nutrient-gene interactions. One approach to treating obesity using epigenetic engagement is a diet rich in vitamins, e.g., niacin, vitamin B_{12}, curcumin, catechin along with anti-inflammatory minerals such as zinc and selenium. Curcumin and catechin, especially vitamin B_{12}, are discussed in the next section.
Epigenetic factors

Different exogenous and endogenous factors have a major impact on modifying gene expression. They may influence transcriptional activity through the commonly accepted mechanism of methylation or hypomethylation of CpG islands. Unexpected epigenetic factor is cow’s milk that provides substantial amount of microRNA, especially miRNA-29b (miRNA-29b) miRNA-29s (miRNA-29s). The presented hypothesis is that miRNA-29b targets mRNA of branched-chain α-ketoacid dehydrogenase (BCKD) and downregulates branched-chain aminoacyl’s (BCAA) catabolism which could explain increased levels of BCAA’s in serum. FTO is BCAA’s sensor and brings essential amino acids to mechanistic target of rapamycin complex 1 (mTORC1) leading to hiperactivated mTORC1 signalling and insulin resistance. This thesis puts milk as one of overlooked regulators of potential epigenetic signalling mechanism that may represent a new point of obesity treatment. Also, it has been shown that miRNA-29b and microRNA-21 (miRNA-21) targeting can indirectly downregulate mRNA of DNA methyltransferase (DNMT) affecting methylation rates and thereby leading to FTO overexpression ultimately causing obesity. (90-92).

Cow milk has negative effects in 2 ways simultaneously: 1) increased BCAA levels lead to FTO overexpression and 2) suppression of DNMT contributes to hypomethylation of CpG sites, and again leads to FTO overexpression. Both mechanisms ultimately lead to increased translation levels and activated mTORC1. Milk enhances mechanisms necessary for cell proliferation and adipogenesis. The use of fermented products such as yogurt, acidophilus and fermented cheeses has the opposite effect. In addition, they contain a significant amount of vitamins B_2 and B_12. Epigenetic regulation via the FTO gene is shown in Fig. 5.

Vitamin B_{12} is a micronutrient of great importance for human metabolism and has been reported that its supplementation influences methylation of genes associated with adiposity, Type 2 diabetes, insulin resistance and other metabolic abnormalities. Vitamin B_{12} deficiency is associated with diminished methylation of homocysteine (Hcy). In the production of S-adenosyl methionine (SAM), a methyl donor, B_{12} is required for adequate methylation (93). It is also known to play an important role in fetal and neural development.

Recent studies report a potential role in gestational diabetes mellitus (GDM), where it may have an impact on foetal development. Low B_{12} concentrations are associated with obesity and insulin resistance in pregnant women, which increases the risk of GDM and influences fetal metabolic abnormalities later in life, such as higher risk for obesity and impaired insulin response (94).
addition, the FTO variants rs8050136 and rs2388405 are associated with lower B_{12} levels (78). Recent findings report that B_{12} supplementation affects methylation and primarily reduces the expression of miR21 (microRNA 21) and secondarily of the FTO and other genes involved in DMT2 pathways (94). These results are important for healthy weight management, which may have global implications.

Dietary supplementation with curcumin has been reported to reduce aspartate aminotransferase (AST), lactate dehydrogenase (LDH), cholesterol, triacylglycerols, FTO, and YTH N6-Methyladenosine RNA Binding Protein 2 (YTHDF2) mRNA expression and increase m^6A levels (95). YTHDF2, like FTO, recognizes m^6A and can mediate RNA degradation and cell differentiation, thereby regulating mRNA stability.

In green tea, the action of catechin is manifested mainly in the reduction of FTO expression to increase methylation. It also acts on the YTHDF2 protein, which activates the decomposition of methylated mRNA and blocks adipogenesis (Fig. 5) (96). Gallocatechin is the most promising natural FTO inhibitor, as experiments showed a similarity of binding site along with a stronger affinity to orlistat, anti-obesity medicine, of more than 60 % (97).

Lifestyle is one of the most important epigenetic contributors in the occurrence of obesity, where one or more genotypes can have the same or different expression localization. Various molecular interactions with other genes are another matter that requires further studies.

Gestational diabetes mellitus (GDM) is another complication of obesity. GDM is described as insulin resistance, usually diagnosed in second or third trimester, resulting from insulin attenuation and diminished glucose metabolism. Risk factors for GDM include increased BMI, family history, older age, increased lipids levels, with diabetogenic hormones such as progesterone and prolactin contributing to the development of insulin resistance in pregnancy (98).

There are numerous external factors that influence expression through methylation. In one study, an inverse correlation was shown between placental methylation levels of CpG 11 site and CpG 6,7,8,9 on CpG island 1 of the FTO promoter and birth weight (99). Franzago et al. (81) reported a connection between rs9939609 and neonatal birth weight, and a lack of association between FTO promoter methylation levels and GDM. Furthermore, CpG 1 site methylation levels are associated with smoking in GDM during pregnancy. Higher levels of triglycerides are associated with methylation of CpG 2. The positive correlation between placental FTO mRNA expression and birth weight suggest an important regulation metabolism in placenta. Hypomethylation of the FTO promoter along with existing metabolic pathology (such as diabetes) contribute to alter fetal programming. Decreased
methylation rates of CpG sites are additionally reported with a higher risk of developing diabetes in patients with DMT2 when methylation levels of the FTO are lower (100).

Food type selection may be associated with the FTO SNPs as individuals often choose food rich in fat and high-carbohydrate diets. In these terms, the FTO polymorphism represents an important genetic factor with a global impact on human health. The effects of epigenetic exposure should also be considered because the FTO encodes demethylase and it is subject to various external factors.

The finding that epigenetic mechanisms influence gene expression gives increasingly a positive approach to the treatment of obesity. This includes counseling on the lifestyle including diet, appropriate supplements and medications, and avoiding known substances that may have a negative effect on gene expression. And the beauty of the future is in revealing the multiple interactions of genes and the influence on the epigenome through the prism of expomes.

CONCLUSIONS

The effect of FTO demethylation continues to be investigated. Positive effects of certain substances on the expression of the FTO gene, such as the intake of curcumin, green tea and vitamin B12 with lifestyle changes, as well as negative effects of environmental factors such as smoking and consuming food such as cow’s milk are known. Many diseases are associated with risk alleles of the FTO gene such as metabolic syndrome, diabetes, obesity and cancer. The solution is a new approach through epigenetic changes that can lead to reduced gene expression and a lower phenotypic predisposition to disease development. The interaction of individual genes with the FTO gene/protein and whether there is a pathway of action of the FTO gene should be considered, but also how FTO expression would affect other genes. Further research that will investigate the complete influence of the FTO gene will be needed to better understand the underlying mechanisms associated between FTO gene polymorphisms, epigenetic regulation and food intake in humans.

ACKNOWLEDGEMENTS

We thank Mary Sopta for critically reading the manuscript.

FUNDING

Project HRZZ 8654.
CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR'S CONTRIBUTION

AMP wrote, edited and revised the manuscript. MM oversaw the process of writing, participated in conception and design of the manuscript and revised the manuscript. AMP and MM gave equal contribution. AHT, VBD, KŽ and IR provided suggestions and critical revision for the manuscript. All authors read and approved the final manuscript.

ORCID ID

A-M. Popović https://orcid.org/0000-0003-3102-0736
A. Huđek Turković https://orcid.org/0000-0002-1466-169X
V. Bačun-Družina https://orcid.org/0000-0002-1140-4882
I. Rubelj https://orcid.org/0000-0002-5702-9416
K. Žuna https://orcid.org/0000-0003-3585-2679
M. Matovinović https://orcid.org/0000-0002-6325-7394

REFERENCES

https://doi.org/10.1159/000445061

https://doi.org/10.1371/journal.pgen.0030115

https://doi.org/10.1210/jcem.85.9.6776

https://doi.org/10.1038/nchembio.687

https://doi.org/10.1038/nature08921

https://doi.org/10.1016/j.gpb.2018.03.001

https://doi.org/10.1371/journal.pone.0067039

https://doi.org/10.1016/j.chembiol.2020.01.002

https://doi.org/10.1126/science.1151710

Please note that this is an unedited version of the manuscript that has been accepted for publication. This version will undergo copyediting and typesetting before its final form for publication. We are providing this version as a service to our readers. The published version will differ from this one as a result of linguistic and technical corrections and layout editing.

Please note that this is an unedited version of the manuscript that has been accepted for publication. This version will undergo copyediting and typesetting before its final form for publication. We are providing this version as a service to our readers. The published version will differ from this one as a result of linguistic and technical corrections and layout editing.

Fig. 1. Position of *FTO* gene and molecular pathway of FTO protein. N-terminus of the FTO protein has demethylation activity on various FTO substrates in RNA and DNA. Demethylation of the m\(^6\)A and m\(^6\)Am takes place via FTO, and re-established over METLL3 and METLL14. m\(^6\)Am, N\(^6\), 2’O-dimethyladenosine; m\(^6\)A, N\(^6\)-methyladenosine; mRNA, messenger RNA; snRNA, small nuclear RNA; m\(^3\)U, 3-methyluracil; ssRNA, single stranded RNA; m\(^1\)A, N\(^1\)-methyladenosine; tRNA, transfer RNA; m\(^3\)T, 3-methylthymine; ssDNA, single stranded DNA; METLL3, methyltransferase like 3; METLL14, methyltransferase like 14; FTO, fat mass and obesity-associated gene.
Please note that this is an unedited version of the manuscript that has been accepted for publication. This version will undergo copyediting and typesetting before its final form for publication. We are providing this version as a service to our readers. The published version will differ from this one as a result of linguistic and technical corrections and layout editing.

![Diagram](image)

Fig. 2. Schematic illustration of *FTO* expression in humans and mice. BMI, body mass index
Fig. 3. Molecular interactions between the FTO SNPs and neighbouring genes. SNPs rs8050136 A allele and rs1421085 C allele have reduced affinity for CUX1 P110 isoform, resulting in reduced activity of the FTO and RPGRIP1L, causing diminished response to leptin. SNP rs1421085 affects ARID5B repressor responsible for activity of the IRX3 and IRX5 gene, involved in adipocyte differentiation. RPGRIP1L, retinitis pigmentosa GTPase regulator-interacting protein-1 like; FTO, fat mass and obesity-associated gene; IRX3/5, iroquois homeobox 3/5; CUX1, cut like homeobox 1; ARID5B, AT-rich interaction domain 5B.
Fig. 4. *FTO* regulation of genes involved in adipogenesis: a) Schematic illustration of *FTO* demethylation activity on *Runx1* gene and impact on adipogenesis b) *FTO* binds to CEBP factors and enhance their binding activity to promote transcription of genes responsible for adipogenesis. Runx1, Runt-related transcription factor 1; Srsf2, Splicing regulatory proteins; CEBP, CAAT Enhancer Binding Proteins – CAAT EBP
Fig. 5. Epigenetic regulation via the \textit{FTO} gene. External factors such as vitamin B_{12}, curcumin or green tea increase methylation of the \textit{FTO} gene and blocks adipogenesis. On the other hand, milk, triacylglycerols and smoking inhibit methylation and thereby increase the \textit{FTO} expression causing adipogenesis. Catechin also increase YTHFD2 activity, which is m6A reader, therefore YTHDF2 activity increases methylation levels of \textit{FTO} gene and blocks adipogenesis. \textit{FTO}, fat mass and obesity-associated gene; YTHDF2, YTH N6-Methyladenosine RNA Binding Protein 2; miRNA-29s, microRNA-29 family members; microRNA-29b, member of the micro RNA-21 family; miRNA-21, microRNA-21
Table 1. Characteristics of most common FTO polymorphisms associated with obesity

<table>
<thead>
<tr>
<th>FTO polymorphism</th>
<th>Association</th>
<th>rs9939609 AA</th>
<th>rs9930506 GG</th>
<th>rs1421085 CC</th>
<th>rs8050136 AA</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMI</td>
<td>Higher (61)</td>
<td>Higher (61,65)</td>
<td>Higher (49-50)</td>
<td>Higher (70)</td>
<td></td>
</tr>
<tr>
<td>IRX</td>
<td>N/A</td>
<td>N/A</td>
<td>ARID5B repressor (50)</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>RPGRIP1L</td>
<td>N/A</td>
<td>N/A</td>
<td>Lower affinity for CUX1 (49-50)</td>
<td>Lower affinity for CUX1 (49-50)</td>
<td></td>
</tr>
<tr>
<td>FTO expression</td>
<td>Higher (41)</td>
<td>N/A</td>
<td>N/A</td>
<td>HCNE (52)</td>
<td></td>
</tr>
<tr>
<td>PP satiety</td>
<td>Lower (71)</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Overeating</td>
<td>Yes (68-69)</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Fat consumption</td>
<td>Higher (72–75)</td>
<td>N/A</td>
<td>N/A</td>
<td>Higher (76)</td>
<td></td>
</tr>
<tr>
<td>Carbohydrate’s consumption</td>
<td>N/A</td>
<td>Higher (35)</td>
<td>N/A</td>
<td>Lower (76)</td>
<td></td>
</tr>
<tr>
<td>Protein consumption</td>
<td>Higher (77)</td>
<td>Higher if AA/AG allele (35)</td>
<td>Higher (35)</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Vitamin B_{12}</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>Lower (78)</td>
<td></td>
</tr>
<tr>
<td>Lipids</td>
<td>Higher triglycerides, total cholesterol, HDL (79-80)</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Birth weight</td>
<td>Higher (81)</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Brain malformations</td>
<td>Yes (47)</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Insulin, HOMA-IR</td>
<td>Higher (80)</td>
<td>N/A</td>
<td>N/A</td>
<td>Higher (70)</td>
<td></td>
</tr>
</tbody>
</table>

N/A, Not Available; * the numbers indicate the reference; BMI, body mass index; IRX, iroquois homeobox gene; RPGRIP1L, retinitis pigmentosa GTPase regulator-interacting protein-1 like; PP satiety, postprandial satiety; HOMA-IR, homeostatic model assessment for insulin resistance; ARID5B, AT-rich interaction domain 5B; CUX1, cut like homeobox 1; HCNE, high conserving non coding elements; HDL, high-density lipoprotein.