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Summary

Controlled enzymatic modification proteins are currently being used as good sources
of bioactive protein ingredients, and hydrolysates derived from bighead carp muscles may
serve as antioxidants through the control of the processing-related parameters. The antiox-
idant ability was evaluated with regard to the scavenging effect on free radical DPPH·,
OH· and O2

·–. Due to the robustness, fault tolerance, high computational speed and self-
-learning ability, artificial neural network (ANN) can be employed to build a predictive
model for hydrolysis and optimize the hydrolysis variables: pH, temperature, hydrolysis
time, muscle/water ratio and enzyme/substrate ratio (E/S) for the production of antioxi-
dant peptides. Optimum conditions to achieve the maximum antioxidant ability were ob-
tained. The hydrolysates, which scavenged most effectively the DPPH·, OH· and O2

·–, were
hydrolyzed for 4.8 h with an activity of alcalase of 4.8 AU/kg, for 6 h with 3.84 AU/kg
and for 4.3 h with 4.8 AU/kg, at pH=7.5 and 60 °C. Their respective muscle/water ratio
was 1:1.9, 1:1.4 and 1:1. The present study confirmed that ANN could be used to simulate
the hydrolysis process and predict hydrolysis conditions under which the hydrolysates
could show the most effective scavenging ability on DPPH·, OH· and O2

·–.
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Introduction

Protein hydrolysate may be a source of bioactive
peptides, which are short chain peptides with certain bio-
logical properties such as angiotensin converting en-
zyme (ACE) inhibition, antioxidant ability and antithrom-
bosis. Within the sequence of the parent protein, the
peptides are inactive. However, after enzymatic hydro-
lysis, the bioactivity can be released (1). Antioxidant ac-
tivities have been found in hydrolyzed proteins from
many sources such as soybean, milk casein, oil seed pro-
tein and yellowfin sole frame protein (2,3). Unfortu-
nately, very little information about antioxidant peptide

from fish by-products is available (4). Morato et al. (5)
reported that the original protein, the type of hydrolysis
and peptide chain length affected the bioactivity of pep-
tides. Fish protein was chosen for this study as the origi-
nal protein due to its high nutritional value, great sus-
ceptibility to the catalytic action and market availability
(6). Currently, hake, shark, sardine, herring, crayfish,
capeline, dogfish and Atlantic salmon have been studied
for making fish protein hydrolysates (FPH) (7,8). The
bighead carp (Aristichthys nobilis), one of the biggest cul-
tivated freshwater species in China, attracts considerable
interest. Many people consume the bighead carps for
the purpose of good nutrition and delicious flavour of
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fish heads. However, other parts of the bighead carps
are sold at very low price, even though they contain
high-quality proteins. To enhance the usage of the big-
head carps, enzymatic digestion of muscle proteins can
be used to produce FPH as ideal sources of bioactive
peptides. Because the bioactive peptides are continuou-
sly formed and degraded during hydrolysis while the
bioactivity is attributed to the combination of these pep-
tides, controlling the process is very important (9). The
compositions of the peptides resulting from hydroly-
sates depended on the specificity of the enzyme used
and on the processing conditions such as pH and tem-
perature (10). To optimize the hydrolysis for maximum
bioactivity, a model involving the effect of different vari-
ables should be built. However, it was difficult to build
the model because of the complicate relationship be-
tween the bioactive properties and the hydrolysis condi-
tions (9).

Artificial neural network (ANN), which has been re-
cognized as a powerful tool capable of performing bet-
ter than conventional mathematical models, particularly
for the case of nonlinear and multiple processing sys-
tems, is one of the widely studied areas within artificial
intelligence (11). ANN is inspired by biological model
and the building blocks are neurons that are combined
into layers. The input is received and weighed according
to weighing factors, and the resulting quantities are
summed up (12). Without prior detailed knowledge of
the relationship of processing variables, ANN could also
relate the input to output parameters by learning from
provided example and adapting itself through the learn-
ing stage. Due to the robustness, fault tolerance, high com-
putational speed and self-learning ability, well-trained
ANN can be employed in food industry, such as baking
(13), drying (14), thermal processing (15), ultrafiltration
(16) and fermentation (17,18). Compared to empirical
models, ANN is considered to be more advantageous
because it is robust to noise and can accommodate mul-
tiple-input and multiple-output systems. In most cases,
it has been demonstrated that ANN models can perform
better than the conventional ones based on regression,
statistical or parametric models (19,20). Many kinds of
networks are developed with different properties and
application. Among these, back-propagation (BP) multi-
layer neural network is the most common and conve-
nient tool.

The aim of this study was to employ the ANN to
build the hydrolysis model of bighead carp muscles with
alcalase, and then to optimize production conditions for
the maximum antioxidant peptides. Some properties of
the hydrolysates were also investigated.

Materials and Methods

Reagents

Alcalase 2.4 L (an activity of 2.4 AU/mL according
to Novo Enzyme Co., China) was used because it is com-
mercial, inexpensive and nonspecific with endopeptidase
activity obtained from Bacillus licheniformis. 1,1-Diphen-
yl-2-picrylhydrazyl (DPPH·) free radicals and 2-deoxy-
-D-ribose were purchased from Sigma Chem. Co. Other
chemicals were of analytical grade.

Bighead carp hydrolysates

Comminuted and defatted bighead carp muscles were
used as substrates according to Quaglia and Orban (21),
with minor modifications. The hydrolysis was performed
under different conditions with respect to pH, tempera-
ture, hydrolysis time, enzyme/substrate ratio (E/S) and
muscle/ water ratio (mass per volume), summarized in
Table 1. The bighead carps without heads (provided kind-
ly by Zhongshan Foodstuff and Aquatic Product Import
Export Group Co., China) were eviscerated and washed
with water, comminuted in a meat grinder and defatted
by extracting for 30 min with isopropanol (1:1, volume
per mass) 3 times at 46 °C. The protein content of the
substrate after being defatted was 18.65 %. The residue
was homogenized in distilled water with a blender, then
the pH was adjusted, according to the design, with am-
monia (pH=6.5–8), and finally subjected to enzymatic
hydrolysis (according to the required E/S). After hydro-
lysis at different temperatures by rotating at 100 rpm,
the reaction was terminated by inactivating the enzyme
for 20 min at 100 °C in a water bath. The crude hydro-
lysate was then centrifuged at 10 000 rpm for 20 min to
remove insoluble fragments, while the soluble phase was
decanted, freeze-dried and kept at –20 °C for further
use.

Methods

The antioxidant abilities of hydrolysates were evalu-
ated as the scavenging activities with 1,1-diphenyl-2-pi-
crylhydrazyl free radicals (DPPH·), hydroxyl radicals
(OH·) and superoxide anion radicals (O2

·–). Food grade
antioxidants t-butyl-hydroquinone (TBHQ) and ascorbic
acid (Vc), used as references, were commented. All de-
terminations were performed in triplicate and the results
were the average of triplicate trials.

Scavenging ability on DPPH· radicals

The scavenging effect of hydrolysates on DPPH· was
measured according to Wu et al. (22), with some modifi-
cations. A volume of 1.5 mL of each sample (1.3 mL of
distilled water and 0.2 mL of hydrolysate) was added to
1.5 mL of 0.1 mmol/L DPPH· in 95 % ethanol. The mix-
ture was shaken and left for 30 min at 25 °C, and the
absorbance of the resulting solution was measured at
517 nm. A lower absorbance represented a higher DPPH·

scavenging activity. The mixture of 1.5 mL of DPPH· and
1.5 mL of water was used as control. The scavenging
ability on DPPH· was expressed as an inhibition/%=
=100·(control absorbance–sample absorbance)/control
absorbance.

Scavenging ability on OH· radicals

The scavenging effect of hydrolysates on OH· was
measured by the deoxyribose method (23) with modifi-
cations. OH· radicals were generated from Fenton reac-
tion. A volume of 0.2 mL of 10 mmol/L FeSO4 and 0.2
mL of hydrolysate were added to a 30-mL test tube and
mixed for 5 min. A volume of 1.0 mL of 10 mmol/L
2-deoxy-D-ribose was then added, with a total volume
of 1.6 mL using phosphate buffer (PBS, pH=7.4). Finally,
0.4 mL of H2O2 as promoter were added. After the mix-
ture was incubated for 1 h at 37 °C, 1 mL of 0.8 % thio-
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barbituric acid (TBA) and 1 mL of 2.8 % trichloroacetic
acid (TCA) were added. The mixture was heated for 15
min at 100 °C, then centrifuged for 15 min at 4 000 rpm.
The absorbance of the red pigment in the supernatant
was measured at 532 nm. The mixture without the hy-
drolysate was used as the control. The scavenging OH·

ability was expressed as an inhibition/%=100·(control
absorbance–sample absorbance)/control absorbance.

Scavenging ability on O2
·– radicals

The scavenging effect of hydrolysates on O2
·– was

measured by the pyrogallol autoxidation method (24)
with modifications. A volume of 2.8 mL of 1 mmol/L
Tris-HCl (pH=8.2) and 0.1 mL of hydrolysate were add-
ed to a test tube and mixed at 25 °C. A volume of 0.1
mL of pyrogallol solution (0.1 mmol/L) was then added,
and the absorbance change rate of the mixture at 425 nm
was recorded every 30 s. The mixture without hydroly-
sate was used as control. In this experiment, a stable
autoxidation rate of control occurred within 3 min and
the change rate of control absorbance at 425 nm was
controlled at 0.05-0.06/min at 25 °C. The scavenging abi-
lity on O2

·– was expressed as an inhibition/%=100·(con-

trol change rate–sample change rate)/control change
rate.

Determination of degree of hydrolysis (DH) and
peptide chain length (PCL)

a-Amino acid (AN) was assayed by the formal titra-
tion procedure, while total nitrogen (TN) was measured
by the Kjeldahl method (25). The DH was calculated as

DH/% =
A A

T P
Nh Nc

N f

−
×

×100, where ANh and ANc were the

percentage of amino nitrogen of the hydrolysate and in-
tact bighead carp muscle, TN referred to the mean per-
centage of total nitrogen of intact bighead carp muscle,
while Pf was a correction factor for side chain nitrogen,
which cannot be converted into amino nitrogen by hy-
drolysis of peptide bonds (26). According to Adler-Nissen
(27), with the increase of DH, the peptide chain length
could be expressed as PCL=1/DH.

Determination of nitrogen recovery (NR)

After the hydrolysis, the volume of the soluble frac-
tion was recorded and nitrogen contents in these super-
natants were determined by using the Kjeldahl method.
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Table 1. The input and output of learning samples of ANN

Input Output/%

x1 x2/°C x3* x4/h x5** DPPH· OH· O2
·–

1 1 (pH=6.5) 1 (50) 1 (1.2 AU/kg) 1 (3) 1 (1:1) 60.61 60.455 48.27

2 1 2 (55) 2 (2.4 AU/kg) 2 (4) 2 (1:2) 87.76 68.22 37.50

3 1 3 (60) 3 (3.6 AU/kg) 3 (5) 3 (1:3) 55.71 60.81 28.02

4 1 4 (65) 4 (4.8 AU/kg) 4 (6) 4 (1:4) 53.47 57.16 21.55

5 2 (pH=7.0) 1 2 3 4 72.24 64.42 26.30

6 2 2 1 4 3 88.78 65.84 26.73

7 2 3 4 1 2 76.12 67.87 38.37

8 2 4 3 2 1 73.27 65.28 50.43

9 3 (pH=7.5) 1 3 4 2 87.14 73.45 37.93

10 3 2 4 3 1 79.39 72.65 56.61

11 3 3 1 2 4 40.41 59.75 23.69

12 3 4 2 1 3 48.16 61.68 25.00

13 4 (pH=8.0) 1 4 2 3 85.92 58.58 33.19

14 4 2 3 1 4 42.45 56.81 22.85

15 4 3 2 4 1 60.61 77.06 38.37

16 4 4 1 3 2 85.10 66.10 32.33

17

18

19

20

21

22

23

24

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

4

4

4

4

4

4

4

4

1

2

3

4

1

2

3

4

1

1

1

1

2

2

2

2

68.72

76.19

77.85

72.39

78.96

87.89

88.83

87.65

71.38

73.56

72.98

72.84

67.98

68.05

69.20

73.89

53.78

57.32

56.24

51.09

40.41

42.04

41.22

38.50

g/(mg/mL)

Vc 2

Vc 0.2

TBHQ 0.04

93.10

90.38

71.06

–

–

45.28

95.18

89.28

27.72

*by volume per mass, **by mass per volume



NR was calculated using the following equation NR/%=
=100·(total nitrogen in the supernatant/total nitrogen in
substrate) (28).

Determination of amino acid compositions

Amino acid concentration was analyzed using a Wa-
ters HPLC with PICO and TAG amino acid column. The
sample was hydrolyzed for 22 h at 110 °C in 6 mol/L
HCl under vacuum and the hydrolysate was then ana-
lyzed. Analysis of tryptophan was performed by hydro-
lysis of the sample in 3 mol/L mercaptoethane sulpho-
nic acid at 110 °C under vacuum.

Calculation of protein efficiency ratio values (PER)

PER from the hydrolysates of bighead carp was cal-
culated according to the equation (PER = –1.816 + 0.435

[Met] + 0.780[Leu] + 0.211[His] - 0.944[Tyr]), developed
by Lee et al. (29) and Alsmeyer et al. (30).

Experimental design and ANN analysis

ANN was conducted using Matlab language. The
type of ANN used was BP network with a 3-layer struc-
ture. It consisted of 5 artificial neurons in the input
layer, 13 neurons in the hidden layer and 1 neuron in
the output layer (Fig. 1). The input neurons x1–x5 stand
for pH, temperature, E/S (volume per mass), hydrolysis
time and muscle/water ratio (mass per volume) respec-
tively, while the output neuron y stands for scavenging
ability on different radicals, i.e. to evaluate the scaveng-

ing ability on free radicals DPPH·, OH· and O2
·–, three

ANNs with the same structure were employed.

A supervised method of learning with BP strategy
was used. The data were randomly divided into three
sets, 24 objects for learning (Table 1), 4 objects for vali-
dating (Table 2) and finally 1 object for testing the maxi-
mum antioxidant ability. The learning of the ANN was
executed with learning coefficient equal to 0.03 and mean-
-squared error equal to 10–3. The sigmoid function and
linear function were chosen for the activation functions
of hidden and outer layers. When the predicted and de-
sired values reached the goal, the learning process stop-
ped. In the case of this network, learning was required
to be completed in 10 000 epochs by BP methods. When
the trained ANN model needed to be tested, the perfor-
mance of the network was measured by R2 and Er, i.e.

( )

( )
R

y y

y y

i

n

i

n
2

2

1

2

1

1= −
−

−

=

=

∑

∑

i di

di m

and
( )

( )
E

y y

n y y
r

i di

max min

=
−
−

×
∑

100

(31), where R2 and Er were the square of correlation co-
efficient and mean relative error, respectively; yi was the
predicted value by ANN model; ydi was the actual va-
lue, while n was the number of data and ym was the av-
erage of the actual value; and ymax and ymin were the re-
spective maximum and minimum values of all actual
data. If the trained ANN performed well, the ANN
could be used to predict the optimum condition for pro-
duction of antioxidant peptides. The accuracy of the pre-
diction can be tested by the actual experiments.

Results and Discussion

Building and training of BP network

The use of different methods is necessary in assess-
ing antioxidant ability. Kulisic et al. (32) showed that sin-
gle testing method was not sufficient to estimate the an-
tioxidant ability of a studied sample. The combination
of three methods (scavenging DPPH·, OH· and O2

·– abil-
ities) applied in this study can evaluate comprehen-
sively the antioxidant ability. Preliminary experiments
indicated that controlling enzymatic hydrolysis of big-
head carp muscle proteins resulted in generation of pep-
tides, which could scavenge the free radicals. After a
short period of hydrolysis, the scavenging ability reached
a maximum, and then it decreased. As an inexpensive
and nonspecific protease, alcalase served the best for
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Fig. 1. The architecture of artificial neural network used for
bighead carp protein hydrolysis

Table 2. The prediction of ANN compared to the experimental results

Input Output

x1 x2 x3 x4 x5 Scavenging ability on DPPH· Scavenging ability on OH· Scavenging ability on O2
·–

PR OR Error PR OR Error PR OR Error

1

2

3

4

3 4 4 3 2

3 4 3 2 1

4 3 4 1 2

4 4 2 4 1

R2

Er/%

87.68

77.01

68.04

59.45

87.49

76.86

68.59

60.04

0.19

0.15

0.55

0.59

0.997

1.35

67.32

65.62

68.53

72.55

67.06

66.13

68.09

71.98

0.26

0.51

0.44

0.57

0.957

7.60

41.44

49.57

37.43

40.75

41.21

49.46

37.09

41.03

0.23

0.11

0.34

0.28

0.997

1.94

PR: predicted response, OR: observed response



preparation of antioxidant peptides (data not shown).
Additionally, the most important parameters were proved
to be muscle/water ratio, hydrolysis time, E/S, pH and
temperature. To evaluate the effect of the five variables,
ANN was used to build hydrolysis model.

Developing ANN model usually consists of 3 steps:
(i) choosing the ANN’s construction. Theoretically, any
3-layer ANN could be applied to solve the simulation
problem; (ii) training the ANN model with the training
data. During this step, the optimal configuration of ANN
such as learning coefficient, neutrons in the hidden, in-
put and output layers are determined. It has been proved
that the number of neutrons in the hidden layer should
be confirmed during training. If the number is too large,
the calculated speed will slow down, and if too small,
the ANN will lose the accuracy. The same is valid for
the learning coefficient. In this study, the number of neu-
trons in the hidden layer was 13 and learning coefficient
was 0.03. The data in Table 1 show the input and output
of learning samples used for BP network training; (iii)
testing the model performance of trained ANN models
using another set of data independent from the training
data. In this study, 3 5-13-1 BP networks were used. Each
neuron received information through input connections,
then processed the information and finally produced the
output that was distributed via output connection. After
adjusting these weights by minimizing a non-linear er-
ror function, it achieved the goal (the mean-squared er-

ror between the predicted and experimental value equals
to 10–3) through 7058, 7983, and 8359 epochs.

To verify the forecasting reliability, BP network was
used to predict the result, which was compared to the
experimental value (Table 2). The high correlation coeffi-
cient (R2>0.957) and low mean relative error (Er<7.6 %)
indicted that the trained ANN could simulate the enzy-
matic hydrolysis with high reliability, and the prediction
ability gained during the learning process was easily
transferred into unknown data, contained in verifying
sets. Since excellent modeling performances were ob-
tained by using the verifying data outside those used
for training, it demonstrates that the ANN models were
accurate and could be employed in a further analysis.

Optimization of the controlled hydrolysis

From a practical point of view, it is important to
predict the optimization conditions for the production of
antioxidant peptides and evaluate the effect of the hy-
drolysis parameters on antioxidant activity. Preliminary
experiments indicated that the most important factors
affecting peptide production were E/S, hydrolysis time
and muscle/water ratio. To better understand the rela-
tionship between the hydrolysis parameters and the sca-
venging capability, ANN was designed to investigate the
combined effect of time×E/S, time×(muscle/water) on
the scavenging ability, and the 3-dimensional surface
curve was plotted in Figs. 2a–c.

445L. LI et al.: Antioxidant Peptides from Bighead Carp Muscles, Food Technol. Biotechnol. 44 (3) 441–448 (2006)

Fig. 2. The surface curve of the combined effect of time×enzyme/substrate, time×(muscle/water) on the scavenging free radicals
ability of the hydrolysate (a on DPPH·, b on OH·, c on O2

·–)



From the surface curve, it was noticed that E/S, hy-
drolysis time and muscle/water affected the antioxidant
ability of hydrolysates and exhibited interactive effects.
Through the Matlab computation, the optimum operat-
ing conditions obtained from the ANN model were re-
ported as: the hydrolysate A (HA), most effectively scav-
enging DPPH·; the hydrolysate B (HB), most effectively
scavenging OH·; and the hydrolysate C (HC), most ef-
fectively scavenging O2

·–, were hydrolyzed for 4.8 h with
an alcalase activity of 4.8 AU/kg, for 6 h with 3.84
AU/kg and for 4.3 h with 4.8 AU/kg, at pH=7.5 and 60
°C. Their respective muscle/water ratios were 1:1.9, 1:1.4
and 1:1. To test the model, new bighead carp hydroly-
sates were produced at optimal conditions predicted,
and the scavenging abilities (HA on DPPH·, HB on OH·

and HC on O2
·–) were measured (Table 3). The errors be-

tween prediction values and experimental values were

low (<2.25), which indicted that the results predicted by
ANN were satisfactory and correlated well with the ex-
perimental values. Thus, the model based on ANN could
offer a stable response in predicting the optimum pro-
duction conditions. In addition, three hydrolysates showed
stronger scavenging abilities compared to that of 0.04
mg/mL TBHQ, but lower than those of Vc at 0.2 and 2
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Table 3. Values predicted by ANN compared to experimental
results at the optimal hydrolysis conditions

Scavenging ability/% PR OR Error

HA on DPPH·

HB on OH·

HC on O2
·–

90.32

75.48

57.27

91.80

77.73

58.05

1.48

2.25

0.78

PR: predicted response, OR: observed response

Table 4. Amino acid composition of bighead carp protein and bighead carp protein hydrolysate

Amino acid
Composition/%

Bighead carp proteins Hydrolysate A Hydrolysate B Hydrolysate C

Aspartic acid + asparagine 10.46 8.45 9.14 9.51

Glutamine acid + glutamine 16.67 17.44 19.34 15.71

Serine 4.22 3.51 3.41 3.87

Glycine 4.09 4.07 3.80 4.35

Histidine 4.34 3.86 3.46 4.00

Arginine 6.40 5.34 5.07 5.76

Threonine 4.68 4.06 3.84 4.49

Alanine 4.99 4.31 4.10 4.67

Proline 3.77 3.66 3.43 3.99

Tyrosine 3.15 3.57 3.32 3.35

Valine 3.65 4.11 3.70 3.59

Methionine 2.38 3.73 3.80 3.78

Cysteine 0.27 0.19 0.20 0.22

Isoleucine 3.00 2.49 2.34 2.55

Leucine 5.86 4.96 4.47 5.16

Tryptophan 10.27 13.22 13.97 12.52

Phenylalanine 4.03 3.99 3.79 3.74

Lysine 7.76 9.05 8.80 8.74

Total 100.00 100.00 100.00 100.00

Fig. 2. Continued



mg/mL (Table 1). It indicated that hydrolysates derived
from bighead carp muscle protein may be used as natu-
ral antioxidants in food industry.

Property of bighead carp hydrolysates

The DH of hydrolysates A, B and C were 18.0, 20.0
and 17.3 %, while their PCL were 5.5, 5.0 and 5.8, re-
spectively. The results indicated that three hydrolysates
consisted mainly of short peptides that were composed
of 5-6 amino acid residues, and proved that the length
of the peptides could affect the antioxidant ability (33).
This was in agreement with previous report in which
the most of antioxidant peptides were composed of 5-16
amino acid residues (34). For hydrolysates A, B and C,
high nitrogen recovery was achieved, with 76.0, 77.5 and
74.3 %, respectively. As shown in Table 4, the amino
acid profiles of the hydrolysates were similar to those of
the original bighead carp protein, except for methionine,
tryptophan and lysine, which increased during hydroly-
sis. The PER values of hydrolysate A, B and C were
1.12, 0.92 and 1.53, respectively, as compared to 1.74 for
the starting bighead carp proteins, which indicated that
hydrolysis could release the antioxidant peptides from
bighead carp protein while it reduced nutritional value,
which is in agreement with other report (6). However,
the changes in the antioxidant ability and nutritional
value of the original bighead carp proteins by the hy-
drolysis need to be investigated further.

Conclusion

This is the first time that ANN has been applied to
build hydrolysis model for optimizing the production of
peptides. The model provided a quality prediction for
the hydrolysis variables (pH, temperature, E/S, hydroly-
sis time and muscle/water ratio) in terms of free radical
scavenging ability and optimized production conditions.
ANN, a convenient and cheap tool, can be promising in
modeling the controlled hydrolysis and predicting the
biological properties of these peptides.
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