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Introduction
Apple quality is determined by att ributes such as ap-

pearance, fi rmness and fl avour, as well as by the absence 
of physiological and pathological disorders. However, the 
concept of quality in fruits has evolved, and increasing at-
tention is currently given to sensory att ributes to achieve 
higher acceptance by consumers (1). Flavour is one the 
most important and distinctive features of apples, and it 
is determined by both taste and aroma (2,3). While taste is 
mainly determined by sugars and organic acids, aroma is 
a complex mixture of many volatile compounds whose 
composition is specifi c to the species and oft en to the vari-
ety (3–5). The volatile aroma compounds in apple have 
been studied for more than 50 years. In this period, more 
than 300 compounds have been identifi ed (6–8), with only 
a few that contribute signifi cantly to the fruit aroma. They 
mostly include esters, alcohols, aldehydes, ketones and 

ethers (6). Aldehydes predominate in immature apples 
(8–10), but their content decreases as the fruit matures, a 
period in which the concentration of alcohols and esters 
increases, the latt er being the main volatile compounds in 
ripe apples (11,12). All the volatile compounds are of 
great importance for the complete characteristic aroma 
profi le of apples (8). Their composition and concentration 
diff er among varieties (4,13,14), and their production can 
also be aff ected by several factors before, during and aft er 
the harvest.

This manuscript describes the main volatile com-
pounds of apple aroma, their biosynthesis, and the main 
factors aff ecting their production. Finally, studies on the 
application of external precursors in the production of 
vola tile compounds in apple are discussed.
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Volatile Aroma Compounds in Apple
In apples, the profi le of volatile compounds changes 

with maturation; aldehydes predominate at the beginning, 
then the content of alcohols starts to increase considera-
bly, and fi nally the profi le is dominated by esters (15). 
Therefore, it is important to discuss exactly how the culti-
var and biotic and abiotic factors aff ect the profi le of alde-
hydes, alcohols and esters in apples.

Aldehydes derive mainly from the catabolism of fatt y 
acids (9,16). They can also derive from branched-chain 
amino acids such as isoleucine, leucine and valine (17,18). 
There are reports of more than 25 aldehydes in apple (6), 
mostly hexanal, trans-2-hexenal and butanal. Aldehydes 
are abundant in pre-climacteric apples (19), but aft er rip-
ening, the content of some aldehydes becomes almost 
imper ceptible (9,20). However, when volatile content is 
determined in homogenized tissue (juice), high concen-
trations of some aldehydes are found, mostly hexanal and 
hexenals (21,22). Under hypoxic conditions apples can 
also produce acetaldehyde (23), which can be reduced to 
ethanol. Nonetheless, there are apple varieties such as 
Royal Gala (22) and Golden Delicious (23,24) that are very 
resistant to extremely low oxygen concentrations (Table 1; 
6,10,19,21,22,25–27).

Alcohols are formed by the reduction of correspond-
ing aldehydes, by the action of the enzyme alcohol dehy-
drogenase (ADH) (28–30). Linear alcohols are derived 
from the fatt y acid catabolism, whereas branched-chain 
alcohols are produced by the metabolism of branched 
amino acids (31,32). Alcohols are the second most impor-
tant compounds that contribute to the aroma of ripe apples  
aft er esters (33), the most abundant being 2-methyl-1-  
-butanol, 1-butanol, 1-hexanol, 1-propanol and 2-methyl- 
-1-propanol (14,34–36). They are direct precursors of es-
ters (6), which may occasionally be fragmented to their 
corresponding alcohols and fatt y acids by the action of es-
terases (37–41). It has been reported that apples synthe-
size more than 40 alcohols in apples (6).

In the last step of volatile compound synthesis, the 
alcohol acyltransferase (AAT) enzyme transfers an acyl 
group from acyl-CoA to the OH group of an alcohol to 
form an ester (42). This occurs in both fatt y acid and ami-
no acid catabolism (15,43,44). In ripe apples, alcohols con-
stitute 6 to 16 % of the total volatiles (8), whereas esters 
represent, depending on the apple variety, from 80 % in 
Golden Delicious and Golden Reinders (14,45) to 98 % in 
Starking Delicious (36). Esters can have linear or branched 
chains, and their concentration depends on the availabi-
lity of precursors (37,46,47) and on the selectivity and ac-
tivity of the enzymes involved (48–51). Butyl acetate, 
hexyl  acetate, 2-methylbutyl acetate and ethyl 2-methyl- 
-butanoate are the most important esters due to their high 
content and impact on apple aroma of several varieties 
(6,52). Table 2 (6,12,14,25–27,45,48,53–62) shows the main 
alcohols and esters in apples found in diff erent apple va-
rieties at the moment of harvest.

Biosynthesis of Volatile Compounds in Apples
Volatile compounds are synthesized from fatt y acid 

metabolism, amino acid metabolism, and carbohydrate 
metabolism (5,63,64), through the following pathways (40): 
(i) straight-chain aldehydes, alcohols and esters are syn-
thesized from lipids, mainly linolenic and linoleic acids, 
through β-oxidation and lipoxygenase activity (8,16), (ii) 
branched-chain aldehydes, alcohols and esters are derived 
from isoleucine (17,65–67), (iii) terpenoids are synthesized 
via the mevalonate pathway (63,68) and deoxyxylulose 
phosphate pathway (69), and (iv) phenylpropanoids are 
synthesized from the phenylpropanoid pathway (70).

Fatt y acids with 16 and 18 carbons are the most pre-
dominant in apples (C16:0, C18:0, C18:1, C18:2 and C18:3) 
(71), which are the principal substrates for the production 
of volatiles (72). The lipid content and concentration of 
fatt y acids in pre- and postharvest climacteric apples are 
similar, reaching their maximum concentration in the cli-
macteric period (71–75). The most important amino acids 
for the biosynthesis of volatile compounds in apples are 

Table 1. Proportion of aldehydes in the total volatiles identifi ed in each apple variety

Fruit Juice Fruit

Volatile
compound Descriptive odour GD

(19)
BD
(10)

FJ
(21)

GRU
(21)

GD
(21)

GS
(21)

PL
(21)

GRE
(22)

Before maturation  At harvesting Aft er 
ULO

Acetaldehyde pungent, ethereal (6), fruity (25)   1.13
Propanal penetrating (6,25) roasted coff ee (6) 0.60
Butanal pungent (6,25), diluted fruity (6) 3.19 0.10 0.19 0.08 0.18 0.13   0.08
Hexanal green grassy (25), green apple (26) 3.66 12.2 0.34 0.25 0.32 3.08 0.34 34.37
trans-2-hexenal green fruit (6), pungent vegetable (6) 1.55 0.31 0.66 0.39 0.42 6.79 1.00 37.56
Heptanal pungent, greasy (25) 2.98 14.9
Octanal citric fruit (27), strong (25) 5.76 13.24
Nonanal orange-rose, waxy (25) 34.54 26.04
Decanal orange skin, citric (25) 0.38 7.86 0.09 0.10 0.08 0.21 0.19
Benzaldehyde almond oil (25) 2.49 0.60 0.16 0.03 0.01 0.08 0.02   0.03

GD=Golden Delicious, BD=Bisbee Spur Delicious, FJ=Fuji, GRU=Gold Rush, GS=Granny Smith, PL=Pink Lady, GRE=Golden Reinders; 
ULO=ultra-low oxygen
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those with branched chains (leucine, isoleucine and va-
line), although in other fruits, phenylalanine, tyrosine and 
tryptophan are important as well (76,77). The concentra-
tion of most amino acids decreases with the maturation of 
apples (78–81) due to the synthesis and metabolism of 
proteins (78). During storage, an initial reduction in the 
content of amino acids occurs, without signifi cant change 
aft erwards (78). On the other hand, there are two main 
groups of flavour compounds that come directly from 
carbohydrate metabolism: terpenoids and furanones (3). 
The following section describes the main pathways in-
volved in the biosynthesis of volatile compounds in ap-
ples from fatt y acids, amino acids and carbohydrates.

Fatt y acid metabolism 
In apples, β-oxidation and the lipoxygenase (LOX) 

pathway are the two main enzymatic systems in the ca-
tabolism of fatt y acids for the formation of aldehydes, al-
cohols and esters (32,34,44,82), the former being more im-
portant in intact fruit (16,83) and the latt er in cut fruit 
(5,84). Nonetheless, as apples mature, the rates of both li-
pid synthesis and degradation increase, causing a change 
in membrane fl uidity, thereby increasing its permeability 
to diff erent substrates (71,83). This, along with the break-
down of chloroplasts, which release fatt y acids such as 
linoleic (C18:2) and linolenic (C18:3) acids (71), make the 
LOX pathway an alternative to β-oxidation of the whole 
fruit, which is confi rmed by high activity of the LOX 
pathway enzymes during apple development (34,54,73,85).

β-Oxidation of fatt y acids
β-Oxidation is the main pathway involved in the 

degradation of fatt y acids, and in plants it is mainly per-
formed in peroxisomes (86–88), which contain all the 
necessary enzymes. During β-oxidation, fatt y acids are 

activated to their corresponding acyl coenzyme A (CoA) 
by acyl-CoA synthase in a reaction requiring adenosine 
triphosphate (ATP), Mg2+ and coenzyme A with sulfh y-
dryl functional group (CoASH) (89,90). The acyl-CoA is 
then imported into the peroxisome.

The main cycle of β-oxidation, known as the core 
β-oxidation cycle, includes four enzymatic reactions (87) 
performed by three proteins: (i) acyl-CoA oxidase, (ii) a 
multifunctional protein containing domains responsible 
for four enzymatic activities (2-trans-enoyl-CoA hydra-
tase, l-3-hydroxyacyl-CoA dehydrogenase, d-3-hydroxy-
acyl-CoA epimerase and ∆3,∆2-enoyl-CoA isomerase), and 
(iii) l-3-ketoacyl-CoA thiolase (89,90). In the fi rst reaction 
of the main cycle of β-oxidation, acyl-CoA is transformed 
into trans-2-enoyl-CoA by acyl-CoA oxidase. This reaction 
requires fl avin adenine dinucleotide (FAD) as a cofactor 
and O2 as an electron acceptor. The O2 is reduced to H2O2, 
which is degraded by catalase inside the peroxisome (90). 
In the second reaction, 2-trans-enoyl-CoA hydratase cata-
lyzes the hydration of trans-2-enoyl-CoA to 3-hydroxyac-
yl-CoA, which is oxidized to 3-ketoacyl-CoA by l-3-hy-
droxyacyl-CoA dehydrogenase in the third reaction of the 
cycle, requiring NAD+ as a cofactor. In the fourth reaction 
of the β-oxidation cycle, 3-ketoacyl-CoA thiolase catalyz-
es the breakage of the thiol end of 3-ketoacyl-CoA result-
ing in one molecule of acetyl-CoA and one of acyl-CoA 
aft er the removal of two carbons, which return to the 
β-oxidation cycle. This cycle is repeated with the oxida-
tive removal of two carbon atoms in the form of acetyl- 
-CoA from the carboxyl end of a fatt y acid until it is com-
pletely oxidized (Fig. 1; 86,87,89–91). The fi nal product of 
the β-oxidation of fatt y acids with odd number of carbon 
atoms is an acyl-CoA in which the fatt y acid has fi ve car-
bon atoms. The products of oxidation and breakdown are 
acetyl-CoA and propionyl-CoA (91).

Acyl-CoA

3-ketoacyl-CoA

Acyl-CoA
(Cn-2)

Stearic acid (C18:0)

β-Oxidation
(8 cycles)

L-3-hydroxyacyl-CoA

A

1.
CoASH + ATP

AMP + Pi

trans-2-enoyl-CoA

4.
NAD

+

NADH

3.
H2O

2.
FAD

FADH2

5.
CoASH

9 mol Acetyl-CoA

AAT
R-OH

Acetate
esters

cis-9-oleoyl-CoA

6 mol Acetyl-CoA

Oleic acid (C18:1)

trans-2-dodecenoyl-CoA

B

1.
CoASH + ATP

AMP + Pi

trans-2-enoyl-CoA

6.

β-oxidation
(3 cycles) 3 mol Acetyl-CoA

β-oxidation
(5 cycles)

cis-9-oleoyl-CoA

trans-2,cis-4-decenoyl-CoA

Linoleic acid (C18:2)

trans-2,cis-6-dodecenoyl-CoA

C

1.
CoASH + ATP

AMP + Pi

cis-3,cis-6-dodecenoyl-CoA

6.

β-oxidation
(3 cycles) 3 mol Acetyl-CoA

β-oxidation
(1 cycle)

7.
NAPH + H

+

NADP
+

Acetyl-CoA

trans-2-decenoyl-CoA

β-oxidation
(4 cycles)

5 mol Acetyl-CoA

trans-3-decenoyl-CoA

8.

Fig 1. β-Oxidation pathway of C18 fatt y acids. A=saturated fatt y acid (stearic), B=unsaturated fatt y acid with one double bond in cis 
confi guration (oleic), C=unsaturated fatt y acid wi th two double bonds in cis confi guration (linoleic). Adaptations based on 86,87,89–
91. 1. acyl-CoA synthetase, 2. acyl-CoA oxidase, 3. trans-2-enoyl-CoA hydratase, 4. l-3-hydroxyacyl-CoA dehydrogenase, 5. 3-keto-
thiolase, 6. ∆3,∆2-enoyl-CoA isomerase, 7. 2,4-dienoyl-CoA reductase, 8. enoyl-CoA isomerase
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The enzymes of the main β-oxidation cycle are able to 
catabolize linear saturated fatt y acids or those with double 
trans bonds in the ∆2 position (86,89,90). Some linear fatt y 
acids with double cis bonds have odd number of carbon 
atoms and they form enoyl-CoA molecules that cannot be 
metabolized by the enzymes of the main β-oxidation cy-
cle. Three auxiliary enzymes have been identifi ed: (i) a 
∆3∆2-enoyl-CoA isomerase that converts 3-cis- or 3-trans- 
-enoyl-CoA to 2-trans-enoyl-CoA, which can be incorporat-
 ed into the main β-oxidation cycle (90), (ii) a 2,4-dienoyl- 
-CoA reductase that catalyzes the conversion of 2-trans,- 
4-cis-dienoyl or 2-trans,4-trans-dienoyl-CoA into 3-trans- 
-enoyl-CoA, and (iii) a ∆3,5∆2,4-dienoyl-CoA isomerase that 
catalyzes the conversion of 3,5-dienoyl-CoA to 2,4-di-
enoyl-CoA (86,87). All these enzymes are required for the 
conversion of fatt y acids in plants (90). Linoleic and lino-
lenic acids have double bonds with a cis confi guration 
and an even number of carbon atoms. Fig. 1 shows the 
enzymes, cofactors and products involved in the degra-
dation of stearic, oleic and linoleic acids, all present in ap-
ples, through the β-oxidation pathway (86,87,89–91). The 
β-oxidation of long-chain fatt y acids produces shorter ac-
ids such as acetic, butanoic and hexanoic acids, which can 
be reduced to their corresponding alcohols (16) before be-
ing esterifi ed with acyl-CoA by the alcohol acyltrans-
ferase (AAT) enzyme. The combination of acyl-CoA mol-
ecules with diff erent alcohols results in an important 
range of esters. However, given that acetyl-CoA is the 
main acyl-CoA produced in β-oxidation, most of the es-
ters are acetate esters (23).

Lipoxygenase pathway
Lipoxygenase (LOX; EC 1.13.11.12) is a dioxygenase 

that catalyzes the oxygenation of polyunsaturated fatt y 
acids containing a cis-1,4-pentadiene fraction, and the 
product is a conjugated diene (cis, trans) hydroperoxide 
(HPO) (92,93). Linoleic and linolenic acids are the main 
substrates of LOX (3,94), which are released from tria-
cylglycerols, phospholipids and glycolipids by the action 
of acyl hydrolases (32).

Plant LOXs are classifi ed on the basis of their primary 
structure and putative subcellular localization into two 
gene subfamilies: type 1, localized within cytosol, and 
type 2, which are chloroplastic proteins (95–97). LOX en-
zymes are also classifi ed according to the carbon targeted 
for deoxygenation in the polyunsaturated fatt y acid, 
which can be carbon 9 (9-LOX) or 13 (13-LOX) (94,95,98, 
99). Most type 1-LOXs produce 9-hydroperoxide, and type 
2-LOXs produce almost exclusively 13-hydroperoxide de-
rivatives from polyunsaturated fatt y acids (97). However, 
some LOX enzymes have dual positional spe ci ficity (95, 
100–102).

In Royal Gala apples, 11 LOX genes have been identi-
fi ed (40). Li et al. (103) identifi ed 36 genes homologous to 
LOX in the apple (Malus domestica) genome, using the do-
main of 'Lipoxygenase' from Pfam database (104). Vogt et 
al. (96) identifi ed 23 putative LOX genes in the genome of 
Golden Delicious apple reported by Velasco et al. (105). 
Based on sequence similarity, the 23 LOX genes were as-
signed to seven clusters. Clusters with their putative func-
tional sequences were: LOX1a-e, LOX2a and -b, LOX3a 
and -b, LOX5a-e, LOX6a and -b, LOX7a-d, and LOX8a and 

-b. Only LOX9 represents a single gene (LOX9a) (96). Vogt 
et al. (96) also predicted the subcellular location of LOX 
genes. Genes of LOX1, -3 and -7 clusters encode cytoplas-
mic 1-LOX proteins, which may be 9-LOX, whereas LOX2, 
-5, -6 and -8 clusters encode chloroplast 2-LOX proteins, 
which may be 13-LOX, according to Feussner and Waster-
nack’s (95) classifi cation.

Using linoleic or linolenic acid as substrate, enzyme 
LOX1c produced mainly 9-hydroperoxide (77 %), where-
as LOX2b produced predominantly 13-hydroperoxide 
(106). However, LOX1a and LOX2a enzymes exhibited a 
dual positional function producing 13- and 9-hydroper-
oxides in a ratio of 8:1. The latt er two enzymes were clas-
sifi ed with 13/9-specifi city (106).

The genes MdLOX1a and MdLOX5e were found to be 
involved in the production of volatiles in Alkmene, Dis-
covery, McIntosh, Royal Gala and Prima apples. More re-
cently, four genes (LOX1a and -c and LOX2a and -b) were 
related to Golden Delicious apple aroma (106). The genes 
MdLOX2 and MdLOX5 were expressed in leaves, fl owers 
and fruits of Golden Delicious and McIntosh, whereas the 
remaining genes were expressed in a diff erent way or were 
absent from tissues. LOX genes exclusively expressed in 
fruits were not found (96). Of the 22 LOXs, 17 were ex-
pressed in Jonagold apple peel (107). However, litt le is 
known about the specifi c function of each LOX isoform 
(96).

Products of the LOX reaction can be converted to dif-
ferent compounds, through at least six pathways (100). 
One of these pathways is through the hydroperoxide 
lyase (HPL) enzyme (108) (Fig. 2; 16,29,32,63,109). HPL is 
an enzyme belonging to the cytochrome P450 CYP74B/C 
family and acts on hydroperoxides with no need for co-
factors (63) to form short-chained aldehydes (6 or 9 car-
bon atoms) (16,109). Some HPL enzymes break only 
9-HPOs (110), others act only on 13-HPOs, and others 
have dual specifi city (111), which can infl uence the aroma 
profi le of the fruit (5). However, the 9-LOX hydroperox-
ide derivatives are not totally understood (107). In the ap-
ple genome, a total of 39 MdALDH genes were identified 
(112).

Aldehydes (6 or 9 carbon atoms) are subsequently re-
duced to the corresponding alcohol by the enzyme alco-
hol dehydrogenase (ADH) (63). ADH is an oxidoreduct-
ase that catalyzes the reversible reduction of aldehydes to 
alcohols (68,113,114), and its direction is infl uenced by the 
pH. However, at physiological pH, the reaction favours 
the production of alcohols (29). ADH acts on a wide range 
of linear, branched and cyclic alcohols (29), showing pref-
erence for the former in apples (28,115). It also requires the 
presence of the reduced coenzymes NADH and NADPH, 
which possess two diastereotopic hydrogens, pro-R and 
pro-S; the substrate can be att acked from both ends result-
ing in (S) or (R) alcohols. Most ADH enzymes form (S) al-
cohols (116).

The alcohols resulting from ADH enzymatic activity 
are natural substrates for the AAT enzyme, which trans-
fers an acyl group through an oxygen-dependent reaction 
from acyl-CoA to the OH group of an alcohol (42) form-
ing an ester (5,33,68). The diversity of esters formed by 
AAT enzymes can be infl uenced by substrate availability, 
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the specifi city of the enzyme, or by the variety of genes 
encoding ATT enzymes (49–51). Even though AAT has 
more affi  nity for linear than for branched  alcohols (17), 
because acetyl-CoA is the most abundant CoA in fruits, 
most esters are acetate esters (33,117). There are reports of 
15 AAT enzymes in Royal Gala apples (40), although 
Dunemann et al. (52) identifi ed 17 putative AAT genes in 
the genome of Golden Delicious apples, while Souleyre et 
al. (118) reported 18 AAT1 gene models (putative vari-
ants) in the Golden Delicious genome. Four variants of 
AAT1 were identified in Granny Smith (AAT1-GSa-d) and 
three variants in Royal Gala (AAT1-RGa-c); however, only 
AAT1-GSa and AAT1-RGa were expressed and functional 
in ripe apple fruit, both in skin and cortex tissue (118). 
Fig. 2 shows the formation of volatile aroma compounds 
from linoleic and linolenic acids through the LOX path-
way, and Table 3 shows some studies that have been per-

formed on enzymes from the LOX pathway in diff erent 
developmental stages of apples (13,15,34,40,44,45,54,72, 
73,75,79,85,96,106,118–136).

Amino acid metabolism
Amino acids are precursors of volatile aromatic com-

pounds such as aldehydes, alcohols, acids and esters, be-
ing the second most important source of volatile com-
pounds in the aroma of fruits and vegetables (5,32,68). In 
apples, the production of branched-chain esters has been 
reported from the branched amino acids isoleucine (Ile), 
leucine (Leu) and valine (Val) (17,137). These amino acids 
are branched compounds of aliphatic nature and are syn-
thesized in chloroplasts (138,139). Free amino acids in 
cells originate from proteolysis (140). The branched-chain 
amino transferase (BCAT) enzyme catalyzes the last step 
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Table 3. Important enzymes involved in the production of volatile aroma compounds of apple fruit, and their changes at preharvest, 
harvest and postharvest stages

Cultivar Enzyme activity Reference

Lipoxygenase (LOX)
On the tree
Cox’s Orange Pippin LOX activity increased during ripening (73)
Golden Delicious LOX activity increased at the end of ripening (72)
Fuji LOX activity remained constant; twice higher LOX activity in the skin (34)
Starkrimson LOX activity increased in climacteric stage; subsequent reduction of activity (75)
Jonagold LOX activity increased until 160 days aft er full bloom and then remained constant until harvest (85)
Pink Lady LOX activity increased in climacteric stage; subsequent reduction of activity (54)
Golden Reinders LOX activity decreased in the skin until harvest; it remained low and unchanged in the pulp (119)
Golden Delicious 
and McIntosh

LOX2b, -3b and -5e genes were up-regulated by fruit ripening; LOX1a was detected in the last ripening 
stage only in McIntosh

(96)
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Cultivar Enzyme activity Reference

Jonagold LOX-derived C6 aldehydes showed a diff erent patt ern among them during fruit ripening (120)
Jonagold LOX6a, -6b and -7c gene expression decreased; LOX7a expression showed a slight increase, that of 

LOX4a sharply increased at the end, and LOX1a expression increased more than 100-fold during 
ripening 

(106)

At harvest
Greensleeves LOX enzyme remained insensitive to ethylene (79)
Royal Gala LOX1 and -7 genes were regulated by ethylene, but not genes LOX2, -4 and -5 (40)
Golden Delicious Ethylene treatment increased the expression of MdLOX; on the contrary, 1-MCP treatment suppressed 

the expression of MdLOX
(121)

During storage
Schone van Boskoop Higher activity of LOX enzyme in apple core and skin than in the pulp (122)
Fuji Partial inhibition of LOX enzyme under reduced oxygen conditions (123)
Mondial Gala 3 months under controlled atmosphere or regular atmosphere: inhibition of LOX enzyme under 

controlled atmosphere storage
6 months under controlled atmosphere or regular atmosphere: LOX inhibition under both conditions

(124)

Fuji 7 months under ultra-low oxygen + 2 weeks under regular atmosphere: higher activity of LOX and 
hydroperoxide lyase (HPL) in the skin
7 months under ultra-low oxygen + 4 weeks under regular atmosphere: higher activity of LOX and 
HPL in the pulp

(125)

Delbard Estivale Reduction of LOX activity by eff ect of both 1-MCP and AVG (126)
Golden Reinders 7 months under ultra-low oxygen: partial inhibition of LOX enzyme activity (45)
Golden Delicious Ethephon increased the LOX activity in the apple treated with 1-MCP and stored for 14 weeks under 

regular atmosphere 
(127)

Hydroperoxide lyase (HPL)
On the tree
Pink Lady HPL activity increased up to 1 month before harvest (54)
Golden Reinders HPL activity decreased in apple skin with a slight increase at the beginning of climacteric stage, it 

remained lower and unchanged in the pulp
(119)

At harvest
Royal Gala HPL enzyme was insensitive to ethylene (40)
Golden Delicious Expression of the MdHPL gene was significantly enhanced by ethylene treatment, while 1-MCP 

treatment had no significant eff ect 
(121)

During storage
Pink Lady 7 months under low or ultra-low oxygen: higher activity of HPL under ultra-low oxygen storage (128)
Fuji 5–7 months under ultra-low oxygen: higher activity in the skin aft er 5 months, and in the pulp aft er 

7 months
(125)

Golden Reinders 5–7 months under ultra-low oxygen: no diff erence in the activity in the pulp (45)

Alcohol dehydrogenase (ADH)
On the tree
Fuji ADH activity decreased with ripening on the tree (34)
Jonagold ADH activity increased until harvest (85)
At harvest
Greensleeves Maximum activity at harvest; insensitive to ethylene (44)
Fuji Higher activity of ADH in the pulp than in the skin (123)
Royal Gala Of 10 genes, only ADH1 gene expression was decreased by ethylene (40)
Golden Reinders The activity remained stable and increased in the climacteric stage (119)
Golden Delicious Ethylene treatment increased the expression of MdADH3 gene, while the expression of MdADH1 

decreased. 1-MCP treatment increased the expression of MdADH1, while there was no significant 
eff ect on MdADH2 and MdADH3

(127)

During storage
Mondial Gala 6 months under regular or controlled atmosphere: higher ADH activity under controlled than under 

regular atmosphere 
(129)

Table 3. – continued
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Cultivar Enzyme activity Reference

Pink Lady 7 months under ultra-low oxygen: higher activity of ADH in the skin (128)

Delbard Estivale 1-MCP and AVG under regular atmosphere: reduced activity of ADH (126)

Golden Delicious Salicylic acid and methyl jasmonate increased the LOX and ADH activities in apple treated with 
1-MCP and stored for 14 weeks under regular atmosphere 

(127)

Alcohol acyltransferase (AAT)

On the tree

Fuji and Pink Lady No signifi cant changes in the activity of AAT (34,54)

Starkrimson Continuous increase in the activity of AAT and subsequent stabilization (75)

Granny Smith Increase of activity with ripening; only expressed in the skin (13)

Fuji Increase of activity with ripening (13)

Golden Reinders Continuous AAT activity reduction during maturation, and increased with the onset of climacteric 
stage

(119)

Golden Delicious MdAAT2 expression increased during apple maturation; it was up-regulated in response to ethephon 
and methyl jasmonate

(130)

Fuji In girdled trees with foliar urea, ADH and AAT increased compared to control; in ungirdled trees, 
AAT activity was not infl uenced by foliar urea rates

(131)

Granny Smith and 
Royal Gala

AAT1-GS transcript level increased with apple maturation, peaked at day 120 aft er full fl owering, 
then decreased slightly; AAT1-RG transcript level increased during fruit development

(118)

At harvest

Greensleeves The AAT2 gene was regulated by ethylene
The application of 1-MCP reduced the activity of AAT

(44,79)

Royal Gala Increased MpAAT1 isoenzyme activity by ethylene (40)

Tsugaru AAT activity increased with fruit ripening; the 1-MCP reduced the pMdAAT gene expression and the 
AAT activity 

(132)

Golden Delicious Expression of the MdAAT2 gene was significantly increased by ethylene treatment, while both 
MdAAT1 and MdAAT2 were strongly reduced in 1-MCP treatment

(121)

During storage

Law Rome/Red 
Rome 262

3 months under controlled atmosphere or 6 months under regular atmosphere: AAT activity was 
reduced; however, it was recovered aft er 1 week at room temperature

(15)

Gala 4 months under controlled or regular atmosphere: inhibition of AAT activity (15)

Greensleeves AAT activity increased 40–60 % from harvest to 20 days of storage at 20 °C (44)

Golden Delicious 
and Granny Smith

The 1-MCP reduced MdAAT2 expression in Golden Delicious, but not in Granny Smith; MdAAT1 
remained constant in Golden Delicious; MdAAT4 and MdAAT3 were suppressed aft er harvest

(133)

Fuji 3 or 6 months under controlled atmosphere: no signifi cant diff erence in the AAT activity (123)

Golden Delicious Salicylic acid, ethephon and methyl jasmonate increased the AAT activity in the apple treated with 
1-MCP and stored for 14 weeks under regular atmosphere

(130)

Mondial Gala 3 months under controlled or regular atmosphere: high activity of AAT
6 months under controlled atmosphere: strong inhibition of the AAT activity 

(124)

Pink Lady 7 months under controlled or regular atmosphere: higher AAT activity under controlled atmosphere (128)

Fuji Kiku 8 7 months under controlled or regular atmosphere with 2 % CaCl2: increased AAT activity under 
regular atmosphere

(134)

Royal Gala The combination of AVG and 1-MCP reduced ester production, but treatments did not diff er from 
control in apples stored for 3 months under regular atmosphere

(135)

Delbard Estivale The 1-MCP increased the AAT activity; no eff ect of AVG (126)

Golden Reinders 5 months under controlled or regular atmosphere with 2 % CaCl2: lower AAT activity in apple skin 
than in pulp

(136)

Tsugaru The 1-MCP reduced ethylene production, but had no eff ect on pMdAAT gene expression or AAT 
activity

(132)

Golden Delicious MdLOX1a gene was expressed only during storage; MdLOX3b not detected during storage (96)

McIntosh MdLOX7a and -b genes were expressed only during storage; LOX1a, -2a and -5e genes continued their 
expression during storage

(96)

1-MCP=1-methylcyclopropene, AVG=aminoethoxyvinylglycine

Table 3. – continued
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in the synthesis of branched amino acids and the fi rst step 
of their degradation (138,139). Leu is degraded in plant 
mitochondria, and Val and Ile might also be degraded in 
this organelle (138,139) or at least converted into their cor-
responding ketoacids (90,139) because some of the en-
zymes required for the catabolism of Leu and Ile are also 
found in peroxisomes (141). The degradation of branched 
amino acids helps to maintain the balance between NAD+ 
and NADH+H+. Moreover, the produced acyl-CoA serves 
as an energy source for ATP production (142).

The catabolism of amino acids has been well docu-
mented in bacteria and yeasts (18,142–144). In fruits, it 
has been demonstrated that the reactions for the deriva-
tion of volatile compounds from branched amino acids 
follow the pathway found in some of these microorgan-
isms. In apples (17,67,137) and fruits such as melon (31), 
these pathways have been elucidated by the exogenous 
addition of labelled amino acids. The addition of labelled 
Leu, Ile, and Val produces a diff erent ester patt ern in dif-
ferent apple varieties, which indicates that the isozymes 
diff er in their substrate selectivity (137).

In apple and other fruits, the biosynthesis of volatile 
compounds from Ile, Leu and Val starts with the removal 
of the amino group by aminotransferases (BCAT), forming 
α-keto acids (2-oxo-3-methyl pentanoate and 2-oxo-3-me-
thyl butanoate) (18,90,140,143). During this transamina-
tion, the amino acids use 2-oxo-ketoglutarate (2-oxoglu-
tarate) as a receptor for the amino group (18,63,142,145), 
which can be recycled into glutamate by the enzyme glu-
tamate dehydrogenase (GDH) (18,146). α-Keto acids can 
be metabolized by three diff erent pathways (18,67,142).

In the fi rst, 2-oxo acids can be converted into branched 
aldehydes (2-methyl-butanal, 3-methyl-butanal, and 2-me-
thyl-propanal, for Ile, Leu and Val, respectively) by oxida-
tive carboxylation by an α-keto acid decarboxylase en-
zyme (for example pyruvate decarboxylase, PDC) (18,30, 
140,142,143,147). These aldehydes can be reduced to their 
corresponding branched alcohol (2-methyl-butanol, 3-me-
thyl-butanol and 2-methyl-propanol) by action of the ADH 
enzyme, which uses NAD(P)+ as a cofactor (30,140,143,145, 
147). The transformation of amino acids into alcohols is 
known as the Ehrlich pathway, in which the key enzymes 
are transaminases, decarboxylases and dehydrogenases 
(148). Branched aldehydes can also be oxidized to their 
corresponding branched fatt y acid (2-methyl-butanoic, 
3-methyl-butanoic and 3-methyl-propanoic) by the action 
of aldehyde dehydrogenase (AldDH) (30,140,143,147), 
which uses NAD(P)H as a cofactor.

In the second, 2-oxo acids can be converted to fatt y 
acids by oxidative decarboxylation. First, the α-keto acid 
is irreversibly converted to a branched-chain acyl-CoA 
(2-methyl butanoil-CoA, 4-methyl butyl-CoA and 2-me-
thyl propyl-CoA from Ile, Leu and Val, respectively) (141, 
149) by the action of branched-chain α-keto acid dehydro-
genase (BCKDH), which substitutes a CO2 from the 2-oxo 
acid for the CoA cofactor with NAD+ reduction (140). 
Then, the acyl-CoA can be converted to a fatt y acid by 
phosphate acetyltransferase (PAT) (18,140). Branched fat-
ty acids can be transformed into alcohols and esters by 
the reduction of the acid to its corresponding aldehyde 
(67). Alcohols formed by the Ehrlich pathway can be es-

terifi ed with acyl-CoA by AAT to form branched-chain 
esters (8,17,137).

In plant tissues (90) and in yeasts (150), it has been 
reported that 2-methyl-2-butenyl-CoA derived from the 
catabolism of Ile can be degraded to acetyl-CoA and pro-
pyl-CoA through β-oxidation reactions (90). However, 
these esters derived from Ile by this pathway have not 
been reported in apples. In melon, the formation of pro-
panoate from 2-methylbutyl by the addition of Ile has 
been reported (31).

In the third pathway, α-oxo acids can also be reduced 
to hydroxy acids by a hydroxyacid dehydrogenase (HDH), 
which is specifi c for each α-oxo acid (18,142,145). Hy-
droxy acids do not contribute to aroma, but they allow 
the conversion of NADH to NAD+ (140).

Fig. 3 shows the formation of volatile compounds 
from the catabolism of l-isoleucine (17,18,31,67,90,140,142, 
143,151). The levels of precursor amino acids do not al-
ways explain the formation of the corresponding esters, 
therefore, it has been suggested that the selectivity of en-
zymes preceding AAT has an important role in the com-
position of the formed esters (49).

Terpenoids and phenylpropenes
Terpenoids are synthesized via two parallel path-

ways: (i) mevalonate (MVA) pathway, which operates in 
the cytosol and starts with the condensation of two acetyl- 
-CoA molecules, and (ii) methylerythritol phosphate (MEP) 
pathway active in the plastids, which starts with pyruvate 
and glyceraldehyde 3-phosphate as precursors to form 
1-de oxyxylulose 5-phosphate. Both MVA and MEP routes 
result in the formation of isopentyl diphosphate (IPP) and 
its isomer dimethylallyl diphosphate (DMADP), interme-
diaries from which all terpenes are derived. Sesquiter-
penes (C15) and triterpenes are produced via MVA pathway, 
while monoterpenes (C10), diterpenes (C20) and tetrater-
penes (C40) are produced via MEP pathway (3,63,64,68,69, 
152,153). The catalytic conversion of the terpene precur-
sors is carried out by terpene synthase enzymes. Nieu-
wenhuizen et al. (154) reported that genome of cultivated 
apple (Malus domestica) contains 55 putative terpene syn-
thase genes, ten of which appear to be functional.

Monoterpenes and sesquiterpenes are the main fruit 
aroma components from the isoprenoid family in the ap-
ple fruit. The acyclic branched sesquiterpene (E,E)-α- 
-farnesene, synthesized predominantly in epidermal and 
hypodermal cell layers of the fruit (155), is the most asso-
ciated with ripe apple fruit (154,156,157). However, α-far-
nesene has also been associated with superfi cial scald in 
the skin of several apple cultivars (155). According to Pe-
chous and Whitaker (158) (E,E)-α-farnesene is produced 
during storage of apple and its production decreases aft er 
about 2 months of storage. Other terpenes occur in very 
low amounts in fruit and floral and vegetative tissues.

In Mela Rossa Val Metauro wild apple the main vola-
tiles were terpenes, with α-farnesene as the most promi-
nent (159). In Earligold apple, Rapparini et al. (160) iden ti-
fi ed 15 monoterpenes, with limonene, p-cymene, camphor, 
linalool, δ-carene, α-pinene and α-terpinene as the main 
compounds. In Ponta do Pargo, Porto Santo and Santo da 
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Serra apples, terpenes constituted a signifi cant fraction of 
total volatile compounds, with α-farnesene as the main 
compound (an average of 25 %). Other terpenes identifi ed 
were β-farnesene, germacrene, farnesol and estragole 
(161). In Royal Gala, a low terpene producer, (E,E)-far-
nesol was the predominant terpene (84 % of total terpe-
nes), while in King David, Wilmot, Russet, Belle et Bonne, 
Adam’s Pearmain and Merton Russet apples, (E,E)-α- 
-farnesene was by far the most prevalent (161).

Phenylpropenes, such as eugenol, estragole and iso-
estragole, also contribute to apple flavour and aroma. 
These compounds are derived from the phenylpropanoid 
pathway (162). Estragole imparts a spicy/aromatic flavour 
to some apple varieties like Ellison’s Orange, D’Arcy 
Spice and Fenouillet, and an aniseed note to fresh Royal 
Gala apple (162).

Factors Aff ecting the Production of Volatiles  
There are several factors that aff ect the synthesis of 

volatile aromatic compounds in apple. These factors may 
be classifi ed as preharvest, harvest or postharvest factors, 
depending on the period of time during apple growth 
when they are relevant. The eff ect of these factors on the 
production of aroma volatiles in apple is described in this 
section.

Preharvest factors
The aroma of an apple greatly depends on the varie-

ty. Diff erences in the concentrations of volatile com-

pounds among diff erent apple varieties give them a char-
acteristic aroma patt ern (4,12). Table 2 shows the main 
aromatic volatile compounds in diff erent apple varieties. 
It shows that 2-methylbutyl acetate is the main ester in 
apples such as Bisbee Red Delicious (10), Redchief Deli-
cious (35) and Fuji (48,123), whereas butyl acetate is the 
main ester in Golden Delicious (163,164), Royal Gala (165) 
and Mondial Gala apples (53,124).

Environmental factors can also aff ect the composition 
of volatiles in apples. Likewise, it has been reported that 
the profi le of volatile compounds can be aff ected by the 
weather (166), geographic location (167) and cultural 
practices (168).

Although the aroma of apples is a highly heritable 
feature only minimally infl uenced by the harvest, Dune-
mann et al. (52) reported that a variety can develop a dif-
ferent aromatic compound profi le in diff erent production 
years (14,34,169).

The volatile compounds of the aroma are not pro-
duced in signifi cant amounts during apple growth, but 
they increase during the climacteric period, when the 
production of ethylene induces a series of physical and 
chemical changes in the expression of certain genes and 
the activity of certain enzymes (170,171). While total es-
ters are found in very low concentrations when endoge-
nous ethylene levels are low, ester production increases 
rapidly as soon as ethylene synthesis starts (75). Given 
that the production of esters is regulated by ethylene 
(172), inhibitors of this hormone added in the preharvest 
stage reduce the production of volatiles in the fruit. 
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1-Methylcyclopropene (1-MCP) is a powerful ethylene in-
hibitor. It has been observed that its application reduces 
the production of volatiles in apples of diff erent varieties 
such as Golden Delicious (173), Fuji (174), Gala (175), 
Anna (176) and Greensleeves transgenic apple (44,172). 
1-MCP reduces the transcription and translation of the 
gene MdAAT2 in Golden Delicious apples with a subse-
quent decrease in the production of esters (127). Amino-
ethoxyvinylglycine, another inhibitor of ethylene produc-
tion, has also been shown to reduce volatiles in apples 
(164,177–179).

Harvest factors
The concentration of volatile compounds in apple 

greatly increases as maturation advances (15,180). Matu-
rity at the time of harvest is one of the main factors aff ect-
ing the quality of the apple during and aft er storage. Har-
vesting of apples before physiological maturity normally 
implies low volatile levels (181–183). An apple harvested 
in a climacteric stage will produce more volatiles during 
storage compared to preclimacteric fruit or overly mature 
fruit (164,184,185).

Postharvest factors
Apples can be successfully stored under regular or 

controlled atmosphere for several months (186). Howev-
er, storage conditions may reduce volatile compound bio-
synthesis in apples (184,187) depending on the type of 
storage atmosphere employed and the length of the stor-
age period (184,188). Modifi ed atmospheres, especially 
those with ultra-low oxygen (p(O2)<1 kPa), cause a reduc-
tion in the biosynthesis of linear chain volatiles due to a 
reduction in the concentration of alcohols and their esters 
(37,179), except for ethanol and its derivatives, which are 
produced in apple under anaerobic conditions (10,187). 
The synthesis and degradation of fatt y acids also decline 
(15,17,184) due to the reduction in β-oxidation, LOX ac-
tivity and ethylene biosynthesis (22). However, the avail-
ability of substrates, more than the lack of enzymatic ac-
tivity, is the most important factor in the suppression of 
volatile compounds during and aft er storage under con-
trolled atmosphere (48,53,123,124). Low oxygen concen-
tration during storage has litt le eff ect on the biosynthesis 
of branched esters (22,35,179,187).

On the other hand, a storage atmosphere with high 
CO2 concentration suppresses the production of linear 
and branched aromatic compounds, probably by inhibit-
ing tricarboxylic acid, from which certain precursor ami-
no acids derive (184). The reduction in aroma production 
can also be due to a low respiration rate in apples under 
controlled atmosphere, which can deplete stored energy 
metabolites such as ATP and NADPH, required for the 
biosynthesis and desaturation of fatt y acids (189,190).

During postharvest, concentration of esters may de-
crease due to their hydrolyzation by carboxylesterases to 
form their respective acids and alcohols, and by their dif-
fusion in the environment (37–41). However, a low ester 
content can be caused rather by the lack of alcohols as 
precursors than by esterase activity, or diff usion (15,37, 
191).

Addition of Biosynthetic Precursors of 
Volatile Compounds to Apples

The exogenous application of precursors is an alter-
native strategy for aroma regeneration in refrigerated ap-
ples. Substrate availability is an important factor in the 
recovery of aroma in apples stored for long periods (15, 
36,124). It has been demonstrated that precursors added 
to whole apples diff use towards the internal tissues of the 
fruit (46). However, the exogenous application of sub-
strates in apple has been used more to elucidate the meta-
bolic pathways (16,17,192) than to increase the production 
of volatile compounds (193).

Precursors of volatile compounds have been added to 
diff erent tissues of apples, and although intact apples and 
tissue samples metabolize substrates in the same way, 
most researchers prefer to use the intact fruit (17,137,163). 
An intact apple and tissues are placed in a closed glass 
container, and substrate vapours diff use through the tis-
sue. The volatile compounds released by the fruit are car-
ried by a continuous air current and recovered with a trap 
for subsequent analysis using gas chromatography. The 
incubation period lasts 24 hours or more and the evalua-
tion period lasts several days (9,16,17,43,46,179). The use 
of cortical or epidermal tissue disks, usually 9 to 12 mm in 
diameter and 1 to 3 mm thick, has the advantage of allow-
ing easier access of the precursors, reducing the incuba-
tion time to less than 24 hours. However, its disadvantage 
is the requirement of a buff ering system to maintain the 
viability of the fruit cells (194). The recovery of the vola-
tile compounds can be performed by dynamic (16,17,67, 
195) or static headspace (127,196,197), and the volatile 
compounds are analyzed by gas chromatography. The 
addition of fatt y acids, amino acids, aldehydes and alco-
hols stimulates the biosynthesis of volatile compounds in 
diff erent apple varieties.

Fatt y acid addition
The addition of fatt y acids causes the formation of al-

dehydes, alcohols and their corresponding esters, in addi-
tion to the formation of new shorter fatt y acids by the 
β-oxidation pathway, which stimulates a wide range of 
volatile compounds (43,47). The optimal fatt y acid con-
centration to be added decreases with the length of the 
chain. The addition of fatt y acids at a concentration above 
the optimum can cause a decrease in the biosynthesis of 
aldehydes and alcohols, and at very high concentrations, 
fatt y acids can cause browning of the tissues and acetal-
dehyde formation (47).

The addition of propionic acid to Golden Delicious 
apples that were stored for 8 months under controlled at-
mosphere led to the formation of propanal and propyl 
and propionate esters, usually absent from the fruit. 
However, no change in the total concentration of volatiles 
occurred. On the other hand, butanoic acid was converted 
to butanoate esters (46). In this variety, which was stored 
for 7 months under low oxygen concentration conditions, 
butanoic acid increased the biosynthesis of ethyl esters 
and butyl butyrate (184).

The addition of fatt y acids with 2–5 carbons to Gold-
en Delicious apples stored under regular or controlled at-
mosphere for two months was found to cause an increase 
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in the content of aldehydes corresponding to these acids, 
except for those of acetic acid and aldehydes derived from 
the β-oxidation of endogenous fatt y acids. Under regular 
atmosphere, aldehydes are transformed to esters, but un-
der controlled atmosphere, apparently the increased CO2 
content causes a change in ADH activity, with a reduction 
in alcohol that limits the production of esters (9).

In whole Red Delicious and Granny Smith apples, li-
noleic or hexanoic acid was added in a mixture of satu-
rated (C14:0, C16:0 and C18:0) or monounsaturated fatt y 
acids (C17:1 and C18:1) labelled with deuterium. The 
deuterium-labelled linoleic acid formed hexyl acetate (16 
%) and hexanoate esters, mostly ethyl (47 %) and propyl 
hexanoate (20 %), demonstrating that the LOX pathway is 
active in intact fruit. The deuterium-labelled hexanoic 
acid formed hexyl acetate and 1-hexanol, and through 
β-oxidation, 1-butanol and butyl and butanoate esters, 
while through α-oxidation pentyl and pentanoate esters 
were formed (16). The saturated and monounsaturated 
fatt y acids were transformed into hexyl acetate esters (50 
and 47 %), hexanoate esters (38 and 33 %) and octanoate 
esters (50 and 47 %), probably produced through fatt y 
acid β-oxidation (16). Previously, the addition of deuteri-
um-labelled 2-methylbutanoic acid to Red Delicious ap-
ples produced 2-methylbutanoate esters (58 %), mostly 
hexyl 2-methylbutanoate (42 %) and 2-methylbutyl esters 
(38 %), mostly 2-methylbutyl acetate (26 %). In Granny 
Smith apples, ethyl 2-methylbutanoate was primarily 
synthesized (84 %) (17).

Fatt y acids in the form of fatt y acid sodium salts with 
4–18 carbon atoms have also been added to cortical or ep-
idermal tissue disks from recently harvested Calvilla ap-
ples. Fatt y acids with an odd number of carbons formed 
propanol and pentanol, whereas those with an even 
number formed butanol and hexanal. Although the con-
centration of saturated acids with 12–18 carbon atoms 
was very low, hexanal production increased slightly with 
C18:1 and markedly with C18:2 fatt y acids. Alcohol pro-
duction was higher in the skin. Although yellow varieties 
mostly produce acetic acid esters and red varieties butyric 
acid esters, in Golden Delicious apples, butyric acid is 
quickly and completely transformed by β-oxidation into 
acetic acid, forming acetate esters (47). 

Amino acid addition
The addition of amino acids increases the production 

of volatile compounds with a structure similar to that of 
the side chain of the added amino acid (31). Even though 
amino acids are a secondary source of substrates for the 
biosynthesis of volatile compounds in apples, very few 
studies have reported the addition of amino acids as sub-
strates for the production of volatile compounds in this 
fruit (17,66,67). Several amino acids such as leucine, va-
line, phenylalanine (65) and isoleucine (198) have been 
added to plantain, and methionine has been added to 
melon (31).

In Golden Delicious apples stored for 9 months un-
der controlled atmosphere, a solution of l-isoleucine was 
injected into the central cavity. The isoleucine was con-
verted to 2-methyl-1-butanol and 2-methylbutyl esters, 

mostly 2-methylbutyl acetate, and to 2-methyl-2-butenyl 
and 2-methylbutanoate esters (66).

The incubation of Red Delicious apple cubes stored 
for 5 months under controlled atmosphere with l-isoleu-
cine-d10 formed 2-methylbutanoate esters (mostly ethyl 
2-methylbutanoate, 51 %), 2-methylbutyl esters (mostly 
2-methylbutyl acetate, 35 %), and 2-methyl-2-butenyl ac-
etate esters (2 %). On the other hand, in Granny Smith ap-
ple skins, l-isoleucine-d10 treatment produced mostly 
ethyl 2-methylbutanoate ester (99 %) and 2-methylbuta-
nol (1 %) in a similar proportion to that with the addition 
of 2-methylbutanoic acid in both varieties (17). The incu-
bation of Red Delicious cubes with l-isoleucine-d10 during 
fi ve months of storage increased the concentration of 
2-methylbutanoic acid and ethyl 2-methylbutanoate ester, 
but there were very low concentrations of 2-methyl-1-bu-
tanol and 2-methylbutyl acetate esters (hexyl 2-methylbu-
tanoate and 2-methyl-2-butenyl acetate), probably due to 
ATT specifi city in this variety (67). These reports indicate 
that isoleucine is metabolized in apples by diff erent path-
ways within the amino acid pathway (Fig. 3).

Aldehyde addition
In addition to contributing to apple aroma, aldehydes 

are intermediate compounds between fatt y acids and al-
cohols (47). Vapours of aldehydes with 3 to 6 carbon at-
oms added to recently harvested intact Golden Delicious 
apples considerably increased the content of the corre-
sponding acetate esters, indicating that they were effi  -
ciently converted to alcohols (195). Additionally, in Gold-
en Delicious apples that were recently harvested or stored 
for 5 months under ultra-low oxygen conditions, butanal 
vapours induced the formation of butanol, butyl acetate 
and butyl butyrate (179). In fruit stored for 8 months 
under  ultra-low oxygen conditions, butanal was trans-
formed into butanol or butanoic acid, increasing the pro-
duction of esters such as pentyl and butyl butanoate (184). 
In another study on Red Delicious and Granny Smith ap-
ples, deuterium-labelled trans-2-hexenal and cis-3-hexe-
nal aldehydes, added as vapour, produced a mixture of 
hexyl esters (trans-3-hexenyl and cis-2-hexenyl) and 1-he-
xanol in both varieties. Moreover, only in Red Delicious 
apples, ethyl, propyl and butyl butanoate esters were 
formed and in Granny Smith trans-3-hexenol, cis-3-hexe-
nol and trans-2-hexenol alcohols were exclusively formed 
(16). In these varieties, deuterium-labelled hexanal was 
converted to 1-hexanol and to hexyl and hexanoate esters 
(16).

Alcohol addition
Alcohols with 2–8 carbon atoms have been added 

alone or as a mixture. However, because high-molecular- 
-mass substrates evaporate poorly and diff use only weakly 
through cellular membranes (37,46,83), the results obtained 
with 7- and 8-carbon alcohols have not been suc cessful. 
Ester production is proportional to the concentration of 
the added alcohol, and the concentration of acyl-CoA is 
not a limiting factor (43,192), although the diff erence in 
the aroma composition among varieties can be due to dif-
ferences in the preference for acyl-CoA molecules (47). 
The fruit can effi  ciently catabolize alcohols with 8 or few-
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er carbons exogenously added aft er 8 months under ul-
tra-low oxygen, suggesting that ADH remains active 
(184). However, aft er 7 months under ultra-low oxygen, 
intact Golden Delicious apples exposed to a mixture of 
alcohols  synthesized only 20 % of volatiles compared to 
apples stored under regular atmosphere (179). With the 
addition of an alcohol, mostly acetate esters are produced 
(43). However, at the same time, a decrease in the forma-
tion of other esters, especially those with 4 or more carbon 
atoms, can be observed in a kind of antagonism between 
substrates (46,47,192). Given that the addition of a single 
alcohol at high concentration can inhibit the production 
of esters from other alcohols (194), these compounds have 
been added in equimolar solutions. However, the addi-
tion of alcohols leads to high alcohol concentration in tis-
sues, which may deteriorate the apple (43).

Alcohols with 2–6 carbon atoms added individually 
to Golden Delicious (184) and as a mixture to Cox’s 
Orange  Pippin apples (83) were converted to their corre-
sponding acetate esters, with butanol and pentanol being 
the quickest and most esterifi ed in Cox’s Orange Pippin 
apples. In another study with this variety, although hexa-
nol formed hexyl acetate, ethanol did not produce ethyl 
acetate but accumulated in the tissues (37). However, Dix-
on (194) reports that ethanol forms ethyl acetate when 
added individually but not when added in a mixture. 
Ethanol and methanol added separately to Red Delicious 
apples form the corresponding ethyl and methyl esters 
(192). In Golden Delicious apples stored for 5 months un-
der ultra-low oxygen and exposed to 3- to 6-carbon linear 
alcohols, isobutanol and isopentanol added separately in-
creased the biosynthesis of acetate esters (mostly) and bu-
tanoate (to a lesser degree) (179).

Hexanol is one the most widely used alcohols for ap-
plication in apples. In Red Delicious and Granny Smith 
apples, deuterium-labelled hexanal and trans-2-hexenol 
alcohols were exclusively transformed into hexyl esters 
(from acetate to hexanoate and 2-methylbutanoate). The 
same occurred with cis-3-hexenol in Granny Smith ap-
ples, whereas Red Delicious apples were incapable of re-
ducing this alcohol to hexyl esters (16). The addition of 
deuterium-labelled 2-methylbutanol to Red Delicious ap-
ples formed 2-methylbutyl acetate esters (72 %) almost 
exclusively and hexanoate (14 %), whereas in Granny Smith 
apples, 2-methylbutyl esters (70 % acetate, propionate 
and butanoate) and 2-methylbutanoate (7 %) were formed 
(17). Another study reported that 1-hexanol and 2-meth-
yl-1-butanol were converted to acetate esters in Fuji ap-
ples, whereas in Granny Smith hexyl acetate was pro-
duced but 2-methyl-1-butanol was not metabolized (13).

Alcohols have also been added to tissues of apples 
from diff erent varieties. In Golden Delicious skin disks 
treated with 1-pentanol, 1-hexanol, trans-2-hexenol and 
cis-2-hexenol 65 days aft er full fl owering, cis- and trans-2- 
-hexenyl acetate, butanoate and hexanoate esters were 
formed. Pentyl and hexyl esters were only formed 15 days 
aft er full fl owering of fruit (127). In disks of diff erent tis-
sues from Red Chief Delicious apples, the addition of 
pentanol formed pentanal and pentyl acetate in higher 
concentrations, as well as pentyl propionate, butyrate, 
pentanoate and hexanoate esters at lower concentrations. 

None of these compounds was present in untreated fruit. 
The production of volatiles decreased from the skin to-
wards the centre of the fruit (197). In other studies, the 
addition of 1- to 6-carbon linear alcohols to pulp disks 
and skin from recently harvested Red Delicious apples 
achieved the maximum production of esters with 1-buta-
nol converting to butyl and butanoate esters and 1-penta-
nol converting almost exclusively to pentyl esters, while 
methanol and ethanol had very low esterifi cation rate 
(192). All alcohols formed acetate esters, and ethanol, pro-
panol and butanol also formed their corresponding alde-
hydes (192).

Primary 2- to 6-carbon alcohols, when added sepa-
rately or in equimolar solution to apple skin disks, were 
converted to their acetate ester in nine apple varieties in-
cluding Fuji, Golden Delicious, Red Delicious, Granny 
Smith and Cox’s Orange Pippin (194). In skin disks of this 
last variety, in addition to primary 2- to 6-carbon alcohols, 
2-methyl-1-propanol and 2-methyl-1-butanol also formed 
acetate esters and 1-butanol also formed butyl butanoate 
ester, whereas 2-propanol and 2-butanol did not form any 
new product (37). Also, the addition of deuterium-la-
belled hexanol and 2-methyl-1-butanol to diced Red Deli-
cious apples stored for 5 months under controlled atmos-
phere increased the production of their corresponding 
acetate esters (67).

Ester addition
Aldehydes and fatt y acids are diffi  cult to manipulate 

(43), so esters of short-chain fatt y acids have been used as 
precursor sources in apples because they can diff use more 
easily. In apples, esters are hydrolyzed by carboxyleste-
rase, releasing the fatt y acid and the corresponding alco-
hol (43). It has been suggested that these enzymes remain 
active in apples even aft er 8 months of stora ge under ul-
tra-low oxygen conditions (184).

In Cox’s Orange Pippin apples, methyl heptanoate 
was mostly converted to pentyl acetate, and at 10- to 20- 
-fold lower concentrations to propyl acetate, whereas the 
production of heptyl acetate was insignifi cant or absent, 
confi rming that heptanoic acid completes one or two 
β-oxida tion cycles. The same occurred when other methyl 
esters with a fraction of 4- to 8-carbon acids were added. 
Methyl octanoate was converted to butyl and hexyl acetate 
and propyl and butyl butanoate (43). On the other hand, 
the exposure of Red Delicious and Granny Smith apples to 
ethyl 2-methylbutanoate-d3 vapours formed 2-methyl-
butanoate esters, mostly butyl-2-methyl butanoate (18 and 
49 % in Red Delicious and Granny Smith, respectively) and 
hexyl-2-methyl butanoate (17 and 27 %). However, Red 
Delicious formed 2-methylbutane esters (mostly acetate, 
49 %) and 2-methyl-2-butenyl esters (mostly acetate, 2 %), 
while in Granny Smith only traces of the former where de-
tected and the latt er were not detected at all (17).

The exposure of Calvilla, Golden Delicious and Stark-
ing apple skin disks to methyl ether (butanoate to hex-
anoate) caused the release of fatt y acids, and those with 
more than 4 carbons completed 1 or 2 β-oxidation cycles, 
with the loss of 2 carbons in each cycle, forming acetate 
esters with the corresponding alkyl fraction (acetate es-
ters from propyl to hexyl) (47).
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Conclusions
The production of volatile aroma compounds in ap-

ples is the result of a combination of complex metabolic 
pathways with diverse physiological processes and con-
trol mechanisms in the fruit metabolism. Their produc-
tion also varies due to genetic factors, culture practices, 
crop maturity and storage conditions. Especially impor-
tant is the eff ect of compounds that suppress ethylene 
production such as 1-methylcyclopropene, as is the re-
duction in the respiration rate at low O2 and/or high CO2 
atmosphere. In these cases, a decrease in the production 
of adenosine triphosphate molecules reduces the syn-
thesis of fatt y acids, the main precursors of volatile com-
pounds. As demonstrated, although the availability of 
substrates for the production of volatile compounds is a 
critical factor, it is not the only one aff ecting the aroma of 
apples, and it can be controlled in both whole and cut ap-
ples. However, up to this point, there is litt le knowledge 
regardi ng the metabolic pathways, the genes encoding 
the enzymes involved, the mechanisms controlling genet-
ic expression and enzymatic activity, or even the exact 
metabolism of exogenously added precursors, especially 
in freshly cut apples. The exogenous addition of sub-
strates for the production of volatile compounds is an 
area of potential development, especially in lightly proc-
essed apples (sliced, in cubes or cylinders), given the in-
creasing demand for freshly cut fruit on the market. All 
these are areas of opportunity in which bett er knowledge 
can help us understand, and therefore exploit, the pro-
duction of volatile compounds in the apple.
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