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SUMMARY 
Over the last decades, eating habits have shifted towards convenient foods with short-

er preparation times due to people’s busy lifestyles and higher living standards. Rapid 
changes in dietary patterns and lifestyles with the industrialization and globalisation have 
led to the escalating incidence of chronic diseases, which has paved the way to greater in-
terest in dietary changes regarding nutritional status and health benefits. Composite flour 
is a combination of wheat and non-wheat flours or exclusively non-wheat flour with im-
proved nutritional value, therapeutic properties and functional characteristics. The appli-
cation of composite flours in the food industry is an important milestone that maximises 
the use of indigenous crops while optimising the product quality, nutritional value, organo-
leptic properties and consumer acceptance. This paper provides a comprehensive overview 
of the suitability and compatibility of alternative composite flours in the food industry with 
regard to the existing formulations. Furthermore, the suitability of composite flours in food 
products in terms of nutritive and therapeutic value is emphasised. It was found that food 
products with higher nutritional and therapeutic value and acceptable sensory properties 
can be formulated by blending different non-wheat flour sources with wheat flour at dif-
ferent ratios. Composite flours have the potential to reduce the risk of non-communicable 
diseases, particularly type 2 diabetes, cardiovascular disease and cancer. It can be conclud-
ed that the use of composite flours in the food industry is a trending approach due to their 
numerous benefits. 
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INTRODUCTION
Wheat, the staple food in many parts of the world, is responsible for around a fifth of 

the world’s calorie supply. This is virtually a quarter of the calorie intake from grains, which 
provide almost half of the calories consumed worldwide. The preference for wheat is 
based on its ability to serve as a basic ingredient in different products, particularly bread, 
noodles, pasta, cakes, pastries, crackers and flatbread products. Wheat is the most traded 
grain because its robustness and longer shelf life in the absence of humidity and rodents 
make it more suitable for transport and storage than any other commodity. The develop-
ment of wheat consumption shows the displacement of staple foods that have been used 
as the main source of calories in different parts of the world. The key factors that describe 
the development of wheat consumption in developing countries are population growth, 
income growth, determination of the relative prices of wheat and other staple food and 
the preferences of end consumer. Drastic population growth and rising incomes signifi-
cantly increase the demand and thus the wheat consumption. End consumer preferences 
are either determined or perhaps induced by technology, lifestyle and income. Further-
more, the increasing employment of women has encouraged the shift in dietary patterns 
towards convenient foods with less preparation time, thus favouring the use of wheat- 
-based products (1). 

Consumers prefer refined wheat-based products to whole grain wheat-based prod-
ucts because the texture, eating quality and taste of whole wheat-based products are less 
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appealing (2). The removal of outer layers of whole wheat 
grains, which are rich in nutrients and bioactive compounds, 
during milling results in the loss of important health benefits 
of the grain. The refined wheat-based products have a high 
content of digestible carbohydrates with high glycaemic in-
dex (GI), low amounts of minerals, B-group vitamins, polyphe-
nols, β-carotene and dietary fibre, and a low quantity and 
quality of proteins (3–5). The consumption of foods with high 
glycaemic index exacerbates the incidence of type 2 diabetes 
and other cardiometabolic diseases, which have been recog-
nised as a major socio-economic burden worldwide. There-
fore, immediate dietary interventions are needed to develop 
appropriate low GI foods with high palatability to effectively 
prevent and regulate type 2 diabetes and improve cardio-
metabolic health (6). Moreover, despite the increasing con-
sumption of wheat-based products around the world, a wide 
spectrum of health complications associated with wheat in-
tolerance have been reported (7). Three possible wheat-re-
lated disorders, namely wheat allergy (WA), coeliac disease 
(CD) and non-coeliac wheat sensitivity (NCWS), have been 
detected in susceptible individuals exposed to either wheat 
or wheat components, particularly wheat protein (8). Gluten, 
the primary storage protein in wheat, has been identified as 
the major culprit for the onset of wheat-related diseases (7). 
CD is a chronic autoimmune disease triggered by the inges-
tion of gluten and causes small intestinal mucosal damage in 
hereditarily predisposed individuals (8,9). The worldwide 
prevalence of CD based on a diagnosis confirmed by biopsy 
and serology is 0.7 and 1.4 % respectively (10). CD leads to vil-
lous atrophy, which flattens the villi in the small intestine and 
reduces the surface area for absorption of nutrients, leading 
to various complications such as malnutrition, micronutrient 
deficiencies and gastrointestinal symptoms, particularly 
bloating, nausea and abdominal discomfort (7). Although 
gluten is beneficial for maintaining the viscoelastic properties 
of baked goods, consumer interest has shifted from wheat-
based products to wheat-substituted products due to the 
aforementioned consequences (11). 

Recently, a rapidly growing demand for functional foods, 
also known as health-promoting and disease-preventing 
foods, has been observed as consumer awareness and inter-
est in health and nutrition has increased (12). Fruits, vegeta-
bles, whole grains and legumes have been included in the 
diet because the link between diet and disease has been rec-
ognized to provide a substantial amount of bioactive com-
ponents such as phytochemicals, dietary fibre and protein. 
These components impart specific physiological benefits to 
functional foods (2,12). There is growing evidence that regu-
lar ingestion of whole grains can reduce the risk of chronic 
degenerative diseases and obesity (4). The antioxidant capac-
ity of whole grain phytochemicals, particularly polyphenols, 
is responsible for the alleviation of oxidative stress, resulting 
in the delayed onset of some chronic diseases (13). This has 
led to the consideration of fortification or substitution of 
whole wheat flour with other non-wheat cereal flours (4). 

COMPOSITE FLOUR TECHNOLOGY
Composite refers to the combination of two or more com-

ponents with the aim of creating a novel product that is su-
perior to the individual components in terms of improved 
properties, performance or economy (14). Since 1960, mixed 
flours or blends have been scientifically referred to as com-
posite flours. Currently, composite flour is simply introduced 
as mixture or replacement of various types of flour with or 
without wheat flour (15). 

The need for composite flour arose with the scarcity of 
wheat due to climatic or economic fluctuations and the de-
velopment of scientific knowledge about the adverse health 
effects of wheat flour (16). Inadequate climate for wheat cul-
tivation around the world has led to the extensive use of non-
-wheat grains in the bakery industry. For instance, rice in 
South and East Asia, maize in central and South America, mil-
let and sorghum in Africa and rye and oat in Northern Europe. 
In addition to the aforementioned reasons, the occurrence of 
lower yields and inferior quality of wheat due to global cli-
mate change has encouraged the extensive use of other ce-
reals that can be grown further than the borders of Africa and 
Asia due to global warming (17).

Moreover, the blending of wheat flour with non-wheat 
flour is economically and nutritionally beneficial (16). As far 
as economic importance is concerned, the main reasons for 
the greater interest in composite flours in developing coun-
tries are to save foreign exchange by reducing wheat imports 
and thus encourage local agriculture (4,15). Enhancing the 
value of domestic agriculture through better utilisation of lo-
cal crops helps to reduce dependence on imported wheat 
and ultimately ensure food security (4). Composite flour prod-
ucts can be offered at affordable prices for low-income 
groups due to the use of cheaper substitutes (18). On the oth-
er hand, composite flours have a greater nutritional impor-
tance. Compared to wheat flour, they have a better nutrition-
al profile with a high protein and vitamin content. Moreover, 
composite flours can be recognised as a healthier product for 
people suffering from malnutrition and health problems (15). 
In addition, the increasing prevalence of coeliac disease and 
other gluten-associated allergies has triggered the demand 
for non-wheat flour-based products (4). Each individual com-
ponent of the composite flour has a characteristic colour,  
texture and nutritive value that can enhance its use in various  
food products (15). Although numerous studies have been 
carried out on the subject of composite flours, a greater num-
ber of studies have focused on partial substitution of wheat 
flour rather than the complete replacement. 

SUSTAINABLE ALTERNATIVES FOR COMPOSITE 
FLOURS

Cereals

Maize and rice can be introduced as the most important 
cereal grains in the human diet alongside wheat (4). Rice is an 
important staple food for more than half of the world’s 
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population, especially for Asians (19). Recently, researchers 
have focused more attention on different rice varieties due 
to their health benefits, high amounts of bioactive com-
pounds and resistant starch (20). Rice is superior to other ce-
reals due to its low sodium content, high content of easily 
digestible carbohydrates and hypoallergenic properties (19). 
The most important antioxidants in different rice varieties are 
polyphenols such as anthocyanins, proanthocyanidins and 
phenolic acids concentrated in red, black and white rice re-
spectively (20). Pigmented rice varieties have anticancer (21), 
antidiabetic (22,23) and antioxidant (21) properties (24). Rice 
flour does not contain a unique wheat gluten protein and is 
often consumed by coeliac patients either as cooked rice or 
as flour. Black rice varieties have been identified by in vitro 
digestion as a suitable dietary intervention for coeliac pa-
tients due to their potential antioxidant and anti-inflamma-
tory effects (25). 

Maize is the third most important staple cereal consumed 
worldwide. It is considered a versatile crop that has many uses 
worldwide, including as livestock feed, for human consump-
tion and other non-food purposes (26). Despite the fact that 
white and yellow maize varieties are mainly used for human 
consumption, an increasing consumption of pigmented va-
rieties has been observed due to the functional properties, 
especially antioxidant properties of anthocyanins that are re-
sponsible for the colour of the coloured varieties (27). A study 
reported that combination of maize and whole wheat flour 
increased the ash, fat and fibre content of the composite flour 
without affecting the organoleptic properties up to 20 % of 
maize(28).

Although the major cereals contribute to more than 50 % 
of the global caloric demand, they are significantly deficient 
in phytonutrients and micronutrients, especially vitamins and 
minerals. On the contrary, certain minor cereals and pseu-
docereals, which are nutritionally equivalent or even superior 
to the major cereals, serve as excellent sources of phytonu-
trients and micronutrients (29). Minor cereals include sor-
ghum, millet, barley and oats, while pseudocereals consist of 
amaranth, buckwheat and quinoa (30). The health benefits of 
cereals and pseudocereals are shown in Fig. 1 (31–44). 

Millet and sorghum are known as important food crops 
in sub-Saharan Africa and south Asia (30). They are affordable, 
available and can have positive effects on human health and 
nutrition (45). Millets are considered as an important cereal 
with a high dietary fibre, micronutrient and phytochemical 
content. Finger, kodo, barnyard, little and pearl millet belong 
to the millet group (46). The addition of sorghum and pearl 
millet flour to the whole wheat flour in the production of cer-
tain flatbread products (i.e. chapattis and biscuits) leads to 
reduced GI of the products (47). Sorghum and millet enhance 
the hypoglycaemic effect of food products and play a crucial 
role in the regulation of hyperglycaemia (45–48). They are 
also beneficial in reducing serum triglyceride and cholesterol 
values (49,50), body mass management (51,52) and reducing 
the risk of gastrointestinal ailments (30,53,54). Barley is the 

fourth most important cereal worldwide (55). Barley and oats 
are ideal sources of β-glucan, water-soluble dietary fibre, with 
amounts of 2.5–16 and 2.3–8.5 %, respectively (56,57). 
β-glucans are able to lower glycaemic index and increase the 
insulin response in diabetic patients (55,58). They can also im-
prove lipid metabolism, mitigate the occurrence of coronary 
heart disease by lowering plasma cholesterol (55,59) and re-
duce gastrointestinal disorders (55,57,60).

 

Psuedocereals 

Buckwheat is the well-known type of pseudocereals. It has 
higher protein (14.94 %), ash (1.855 %), total phenolic (ex-
pressed in gallic acid equivalents, 21.64 mg/g) and antioxidant 
content (expressed in Trolox equivalents, 131.36 mg/g) than 
whole wheat flour (11.92, 1.202, 5.66 mg/g and 15.91 mg/g, re-
spectively) (61,62). The antioxidant activity of buckwheat is at-
tributable to hyperin, rutin, quercetin and catechins, which 
have numerous health benefits (63). Buckwheat is able to re-
duce the risk of hypertension (64), hypercholesterolaemia (65) 
and diabetes (65) as it contains nutrients such as thiamin-bind-
ing proteins, flavonoids and proteins that can have favourable 
effect on the regulation of blood pressure, serum cholesterol 
and glucose level (61,63). Quinoa, also recognised as a ’com-
plete food’, is an excellent source of minerals (calcium, iron, 
zinc and copper), vitamins (B1, B2, B3 and E), phytochemicals 
(phytosterols, saponins and phytoecdysteroids), unsaturated 
fatty acids and essential amino acids (methionine, lysine and 
threonine) (66). Due to its high fibre content, quinoa plays a 
crucial role in diets intended to reduce the risk of cardiovas-
cular diseases and obesity. Quinoa flour also contains higher 
protein content (15.96 %) (63). Quinoa is known to have a fa-
vourable effect on human gastrointestinal (67), cardiovascular 
(68) and metabolic health (66,69–71). Amaranth flour has high-
er protein, vitamin (folate and B12) and mineral content (iron, 

Minor 
cereals 

Pseudo 
cereals 

Major 
cereals 

Anti-obesity

↓ Gastric emptying and glucose   
absorption rate in the small intestine         

↑ Increased satiety   
↓ Food intake 
↓ Fat accumulation

Dietary 
fibre           

Anti-inflammatory

Polyphenols ↓ Inflammation

Anti-diabetes 

Anti-cancer

↑ Dietary fibre intake
↓ Glycaemic index
↓ Effect of dietary

sugar
↓ Postprandial blood

glucose increase

Anti-cardiovascular                                
disease

↓  Cancer cell 
proliferation 

Polyphenols

↓ Serum triglycerides 
↓ Serum cholesterol
↓ Low-density lipoprotein

cholesterol
↓ Risk of cardiovascular

disease 

Fig. 1. Health benefits of cereals and pseudocereals (31–44) 
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magnesium, potassium and phosphorous) than whole wheat 
flour. Water-holding capacity (WHC), which depends on the 
interaction between fibre and protein, is higher in amaranth 
flour than in whole wheat flour. Viscosity, stability and textur-
al properties of the products can be improved by high WHC 
of flours. Textural properties of amaranth show higher corre-
lation with its pasting properties. The stability of the paste 
made from amaranth starch is higher than that of rice, corn, 
wheat and potato starch. Amaranth has the potential to in-
crease antioxidant capacity, improve different immune pa-
rameters, mitigate blood pressure and reduce cholesterol 
when consumed frequently (72–75). Buckwheat and amaranth 
are categorised as low GI foods, while quinoa has a medium 
GI. Therefore, these pseudocereals can be used as functional 
ingredients in novel product formulations to regulate the gly-
caemic impact of the final product (61). 

 

Legumes

In contrast to the past, the demand for functional foods 
with increased nutritional value, e.g. products that can fulfil 
the nitrogen and amino acid requirement of the body, has 
increased due to people’s health awareness. Meanwhile, the 
consumption of plant proteins instead of animal proteins has 
become a global trend in the context of environmental con-
servation and the reduction of gas emissions (76). Dry beans, 
chickpeas, dry peas, lentils, cowpeas and broad beans are im-
portant crops belonging to legume family (77). Flours made 
from pulses are used as supplements of wheat flour due to 
their higher protein content (76). Wheat flour is blended with 
pulses to improve the balance of essential amino acids and 
thus the protein quality, as cereal proteins are deficient in ly-
sine but rich in sulphur-containing amino acids, especially 
methionine and cysteine, while legumes are a rich source of 
lysine but deficient in sulphur-containing amino acids (78). 
Yellow peas, green peas, red lentils and chick peas have a 
higher protein content (19.82, 21.78, 23.72 and 22.19 %) and a 

higher ash content (2.32, 2.38, 2.10 and 2.66 %) than whole 
wheat flour (15.13 and 1.80 %) (79). People suffering from hy-
pertension (80) and hyperglycaemia (81) benefited from the 
consumption of bean flour due to the phenolic compounds 
that can inhibit enzyme activity (82). Moreover, chickpea flour 
has been recognised as a hypoglycaemic agent that plays a 
crucial role in the regulation of type 2 diabetes due to the 
presence of a proteinaceous fraction and specific polysaccha-
rides identified as potent inhibitors of the enzyme α-amylase 
(82). The therapeutic importance of legumes is shown in Fig. 
2 (83–88). Legumes are often overlooked because of the an-
tinutritional factors. Nevertheless, mung beans have been 
considered due to their comparatively low content of antinu-
trients, considerable amount of proteins (24 %), vitamins, 
minerals and bioactive compounds. Therefore, the use of 
mung beans resulted in enrichment of low-protein products 
and alleviation of protein malnutrition (89). Another study 
showed the potential of common beans (22.73 % protein con-
tent) as a protein supplement. Despite their nutritional ben-
efits, common beans are beneficial in the treatment of coro-
nary heart disease, diabetes, obesity and cancer (81,90–92). 
Although pigeon pea is underutilised due to its hard-to-cook 
nature, it is a good source of protein, fibre, vitamin B complex, 
minerals and has a low GI (93). Horsegram has been recog-
nised as a potential ingredient in the formulation of commer-
cial food products, especially bakery products or as a partial 
substitute in composite flours. The addition of horsegram im-
proved the nutritional value of the products by increasing the 
protein, micronutrient and dietary fibre content. In addition, 
phenolic compounds, dietary fibre and complex carbohy-
drates help to reduce the GI and alleviate obesity, diabetes 
and heart diseases (94–97).

Although the addition of pulse flour improved the nutri-
tional value and therapeutic properties of composite flour, 
dough viscosity and stability decreased because the dilution 
of gluten with the increasing amounts of pulse flour hindered 

Fig. 2. The therapeutic importance of legumes (83–88). GI=glycaemic index. 
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the development of the gluten network. Specific volume and 
hardness of the formulated bread loaves were reduced by the 
increased proportion of pulse flour (79). Water absorption ca-
pacity of the composite flour was improved with the addition 
of red kidney bean flour, as it increased the fibre and protein 
content of the composite (98). Moreover, the addition of 
green gram flour also increased the water absorption capac-
ity of the composites due to the high water-attracting polar 
amino residuals. The oil absorption capacity illustrates the 
ability of protein matrix to bind with fat via capillary action 
(89). Protein, which consists of hydrophilic and hydrophobic 
components, is the most important chemical compound that 
affects the oil absorption capacity (98). Better hydrophobici-
ty as a result of increased non-polar amino acids exposed to 
fat with increasing protein content of the composite, increas-
es the oil absorption capacity of the composite flours (92). 
Therefore, greater attention has recently been given to the 
use of pulses as a functional ingredient in various food prod-
ucts without affecting the desirable properties of the product 
and its eating quality (94). 

 

Roots and tuber crops

The most important root crops, namely cassava and 
sweet potato, and the most important tuber crops, particu-
larly cocoyam, potato and yam, are consumed as staple or 
secondary staple crops. Root crops play a vital role in ensur-
ing food security due to their inherent advantages and cli-
matic resilience to extreme and unpredictable environmental 
fluctuations (99). Cassava has been recognised as a cheap and 
important source of carbohydrates that can be used as a 
promising substitute for wheat flour (100). Increased addition 
of cassava flour reduced the protein content of the compos-
ite flour due to its low protein content (101). Water absorption 
capacity, a favourable property in dough handling, is in-
creased by the addition of high-quality cassava flour because 
the weak molecular arrangement and inadequate network 
architecture of cassava starch improve the penetration of wa-
ter (89,101). Sweet potato can contribute to food security in 
developing countries as it has a short maturation period and 
can grow under unfavourable conditions. Moreover, it is an 
excellent source of β-carotene, minerals, vitamin C, B1, B2 and 
B3. Since sweet potato flour has a lower fat content (1.5 %) 
than whole wheat flour (3.90 %), it reduces the fat content of 
the final products, which has a positive effect on shelf life as 
it prevents rancidity. Products containing sweet potato flour 
provide the body with substantial amounts of fibre because 
sweet potato flour has a higher fibre content (3.28 %) than 
wheat flour (0.32 %) and helps to control the bowel integrity, 
reduce blood cholesterol and regulate blood sugar levels 
(102–105). Taro roots, which are easily digestible, are a better 
source of fibre (2.81 %), calcium and potassium (12 and 254 
mg/100 g) than whole wheat flour (1.54 %, 0.217 and 1.762 
mg/100 g, respectively). Functional properties of composite 
flour, including water and oil absorption capacity, increased 
with the addition of taro root. Taro can be used as an effective 

raw material in composite flours to improve the nutritional 
and functional properties of whole wheat flour (106). Co-
coyam, an underutilised tuber, improved the nutritional value 
and affordability of wheat-based products (107). Cocoyam 
has a relatively higher mineral content (calcium, magnesium 
and phosphorus) and more digestible protein fraction than 
other important roots and tubers (99). 

 

Fruits and non-leafy vegetables

Recently, greater attention has been paid to the use of 
natural raw materials for the development of functional foods 
that can positively affect human metabolism and promote 
healthy lifestyle through complete nutritional profile (108). 
Important health benefits of the main alternative plant sourc-
es other than cereals and legumes are shown in Fig. 3 (109–
112). The bioactive compounds, the type of carbohydrates, 
the amino acid and fatty acid profiles of the natural food com-
ponents can modify the food products to achieve an optimal 
nutritional balance. Vegetables have a beneficial effect on 
human health due to the presence of phyto-nutraceuticals, 
including minerals, vitamins and dietary fibre. Composite 
flour containing cauliflower can be recommended as a mul-
tifunctional flour mixture as cauliflower contains easily avail-
able bioactive compounds. Moreover, the addition of vege-
tables increases the ash content due to the high mineral 
content (108).

Avocado, known as a super-supplement due to its supe-
rior nutritional profile and numerous health benefits for hu-
mans, is used in the development of functional foods. The 
addition of avocado pulp improved the antioxidant activity, 
total phenolic, total flavonoid and carotenoid content, as well 
as high-quality fatty acid profile of whole wheat chapattis 
(113). Blending whole blackberry flour with whole grain wheat 
flour increased the total dietary fibre, total phenolic and an-
thocyanin content of the composite flour, improving its sen-
sory properties, nutritional quality, antioxidant properties 
and health benefits (114). 

Fruits and 
vegetables

Green 
leafy 

vegetables

Roots and 
tuber 
crops

Spices 
and herbs

Anti-cancer activity

Anti-diabetic activity

Anti-inflammatory 
activity

Anti-microbial activity

Improvement of 
gastrointestinal health

Prevention of 
cardiovascular disease

Fig. 3. Health benefits of sustainable alternative flours (109–112)  
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Mushrooms

Mushrooms are considered an unused food source of 
great culinary and therapeutic importance (115). The addition 
of mushroom to bread improved antioxidant activity and to-
tal phenolic content due to the higher content of glutathione 
and ergothioneine as antioxidants in mushrooms (108). Oys-
ter mushrooms have been used as an ingredient in the devel-
opment of functional cookies due to their therapeutic prop-
erties attributable to a wide range of bioactive compounds 
(115). They have shown antimicrobial and antioxidant prop-
erties as well as cytotoxic effects (116,117). Moreover, mixing 
oyster mushrooms increased the protein, fibre and ash con-
tent of whole wheat flatbread (118). In addition, powders of 
lion’s mane, turkey tail and reishi mushroom showed antimi-
crobial (119–121), antidiabetic (122–124), antiobesity (125–127), 
anticancer (121,128,129) and neuroprotective (130–132) prop-
erties, which could be due to numerous bioactive constitu-
ents with different configurations (133). 

 

Green leafy vegetables

Green leafy vegetables are cost-effective and nutri-
ent-rich food that, in addition to their nutritional importance, 
contain a wide range of non-nutritive bioactive compounds 
that can have therapeutic properties. These vegetables are 
an excellent source of vitamins such as vitamin C, B2, E, folic 
acid and provitamin A compounds such as β-carotene and 
they contain significant amounts of minerals (e.g. iron, phos-
phorus and calcium). Therefore, the addition of green leafy 
vegetables plays an important role in nutrient deficiencies 
(111). The ash, protein, fibre, calcium, magnesium, zinc, iron, 
potassium and total phenolic content of moringa leaf flour 
are higher than of whole wheat flour. Moringa leaves also 
have antidiabetic (134), anticancer (135), antioxidant and an-
timicrobial properties (136). The addition of moringa leaves 
improved the antioxidant, nutritional and therapeutic prop-
erties of whole wheat flour (137). Spinach is considered as a 
naturally enriched green leafy vegetable with more ash (2.99 
%), protein (19.18 %), fibre (8.19 %), sodium (98.20 mg/100 g), 
calcium (1303.9 mg/100 g), iron (40.36 mg/100 g) and zinc 
(13.38 mg/100 g) than whole wheat flour. Despite the im-
provement in nutritional and health benefits, the addition of 
spinach powder affected the rheology of the dough, while 
dough development and stability decreased with increasing 
amount of substitution (138). Green leafy vegetables have a 
known potential as functional ingredients that can be used 
to enrich or fortify food products (111).

 

Herbs and spices

Spices themselves will not become a staple food, but they 
can improve the functional profile of food. The use of spices 
as flavour additives dates back thousands of years. Spices im-
part colour, flavour and aroma to foods while extending their 
shelf life. Spices and herbs have significant antioxidant prop-
erties due to phenolic compounds (139). The energy value, fat 

and protein content of composite flour increased with the 
addition of even a small amount of germinated fenugreek 
powder (5 %). Better nutritional and acceptable organoleptic 
properties of cookies baked at 175 °C were obtained by add-
ing 10 % fenugreek flour (140). Dietary spices can also im-
prove the digestive properties of food by stimulating the se-
cretion of corresponding enzymes present in food. The 
addition of 1 and 2 % ajwain, cumin, cinnamon, black pepper, 
fennel and ginger increased the protein digestibility of whole 
wheat flour (141). Oregano and bay leaf improved the radical 
scavenging activity of whole wheat and meat-based bread. 
The high content of carnosic acid, rosmarinic acid and carno-
sol in oregano and the high content of methyl eugenol and 
eugenol in bay leaf could be responsible for their antioxidant 
potential. They also act as natural preservatives that reduce 
oxidative stress and microbial deterioration during storage 
(142). Saffron, considered a high-value spice worldwide, is not 
only used in cooking for its flavour and colour, but also has 
therapeutic properties including antidiabetic (143), cardio-
protective (144), anticancer (145) and antidepressant effects 
(146,147). Therefore, spices can be used as functional ingredi-
ents to increase the nutritional value and medicinal proper-
ties of food (139). 

 

Nuts and seeds

Whole wheat muffins with added flaxseed are known as 
an appropriate functional food for people with cardiovascu-
lar disease and obesity (148–150). Chia seeds have high ratio 
of polyunsaturated fatty acids, α-linolenic acid (50–57 %) and 
a low ratio of linoleic acid/α-linoleic acid (LA/ALA). The lower 
the LA/ALA ratio, the greater the health benefits. Adding chia 
seeds to the diet helps prevent cardiovascular disease 
(151,152). A dietary fibre-enriched product can be made by 
mixing whole wheat flour with peony seed oil (15 g) and chia 
seeds (12 g) to improve antioxidant activity (153). The addition 
of prehydrated chia seeds or flour optimised the specific vol-
ume, texture and acceptability of the bread better than the 
untreated seeds or flour (154). The whole wheat biscuits with 
added walnuts have better shelf-life stability due to the high-
er antioxidant activity (155). The addition of cashew nuts to 
whole wheat composite bread resulted in an improved fla-
vour and taste profile. Moreover, the addition of larger 
amounts cashew nut flour had a significant effect on the vis-
cosity and consistency, resulting in an excellent mouth feel 
and overall sensory experience (156). Peanuts are known as 
an underutilised plant with high nutritional value. Peanut-en-
riched whole wheat flatbread has improved textural, antiox-
idant and sensory properties as well as higher macro- and 
micronutrient content (157). 

 

Fruit and vegetable side streams

Recently, the use of side streams from the food industry 
in the development of functional foods has attracted atten-
tion from an economic point of view as it reduces waste 
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disposal costs, from a socioeconomic point of view as it im-
proves nutritional value of products for consumers, and from 
an environmental point of view as it reduces waste disposal. 
Side streams include peels, seeds, juice and stems (158,159). 
The increased content of flavonoids and polyphenols as well 
as antioxidant activity of whole wheat flour with added date 
seed powder show that it is a functional food ingredient. Date 
seeds have been recognised as a promising source for avert-
ing liver damage and preventing hepatotoxicity in rats 
(158,160). The addition of jackfruit seed flour improved the 
nutritional value of the composite flour as it had higher ash 
(3.4 %), protein (13.3 %), fibre (5.1 %), calcium, magnesium, 
potassium and phosphorus content (68.4, 161.6, 1454.4 and 
301.7 mg/100 g, respectively) than whole wheat flour. In ad-
dition, bioactive and phytochemical ingredients have antidi-
abetic (161), antioxidant (162) and anti-inflammatory (163) 
properties, which provide various health benefits to humans 
(164). Orange peels contain multiple bioactive compounds, 
including flavonoids and cinnamic acids, and have various 
health-promoting properties, such as anticarcinogenic (165), 
anti-obesity (166) and anti-diabetic (167) properties. Despite 
the fact that apple and cherry tomato peels have significant 
health benefits, the addition of these peel flours to whole 
wheat flatbread led to the formation of acrylamide (133). An-
other study reported increased nutritional value and mineral 
content (i.e. iron, potassium, calcium, sodium and magnesi-
um) of whole wheat cookies with added avocado/banana 
peel (168). Apple pomace, Indian gooseberry pomace powder 
and bottle gourd peels were identified as potential alterna-
tives in whole wheat composite flour because of their higher 
content of ash, fibre, pectin, vitamin C, total phenols and bet-
ter health benefits (159). 

 

Microalgae

Recently, there has been an increased focus on the sup-
plementation of microalgae, as they contain promising bio-
active compounds that can act as functional components 
(169). Microalgal biomass is widely used as dietary supple-
ments, herbal products and nutrient isolates. In addition to 
the direct consumption of microalgal biomass, they can be 
used in novel food formulations due to their balanced chem-
ical composition, especially their versatile fatty acid profiles, 
antioxidants, vitamins, minerals and high-quality proteins, as 
well as their specific interesting properties (169,170). The in-
tegration of microalgae into the diet confers therapeutic 
properties such as cardioprotective, anticancer, antioxidant, 
immunomodulatory and chemoprotective properties (171). 

Spirulina, a blue-green filamentous microalga, is an ex-
cellent source of protein (60–70 %) with high biological im-
portance due to its vitamins (vitamin B12 and provitamin A), 
minerals (iron, calcium and magnesium) and bioactive com-
pounds (total phenols, chlorophylls, carotenoids and flavo-
noids) (169,171). They have antioxidant (172), antidiabetic (172), 
immunomodulatory (173), antihypercholesterolaemic (174), 
anticancer (175) and anti-inflammatory activity (175). Spirulina 

has been recognised as a potent candidate for functional 
foods due to the above benefits. It has increased the protein 
digestibility of whole wheat flour bread (170). Moreover, spir-
ulina has contributed to the improvement of the amino acid 
profile, nutritional value and bioactive parameters of whole 
wheat pasta (171). Nannochloropsis microalgae are known for 
their higher content of eicosapentaenoic acid (EPA), which is 
beneficial in biological membrane functions. The addition of 
Nannochloropsis to the pasta significantly increased the pro-
tein, ash, lipid and EPA acid content (176). The combination of 
Haematococcus pluvialis, astaxanthin and dietary fibre-rich 
marine-derived microalgae significantly reduced the rate of 
glucose release during in vitro digestion of whole wheat 
cookies. The addition of microalgae thus reduced the glycae-
mic response and improved the bioactive compounds of 
whole wheat cookies (177). 

APPLICATION OF COMPOSITE FLOURS IN FOOD 
INDUSTRY

There is an increasing interest in the successful use of 
composite flours in the development of a wide range of food 
products, especially bakery products, with the intention of 
improving the functional and technological properties of the 
final product. Different amounts of different types of flour 
are mixed with wheat flour to develop bakery products. The 
amount to be replaced is determined by the quality and 
quantity of wheat proteins, as it determines the desired de-
gree of dough viscosity, plasticity and elasticity, to obtain the 
quality of the final product (100,178). 

The use of different food components in product formu-
lations is determined by the functionality of each ingredient, 
i.e. the properties other than nutritional value that regulate 
the behaviour of foods during different treatments (89). For 
instance, too high or too low water absorption capacity of 
flours has a detrimental effect on product quality. A higher 
water absorption capacity is preferred for the development 
of texture of bakery products such as bread and biscuits (92). 
Water absorption has a positive effect on loaf volume, frac-
ture stress of bread crumb, proofing and bread yield. Exces-
sive water absorption leads to a large bread volume, an open 
crumb with oversized cells and an increased susceptibility to 
mould, while insufficient water absorption leads to a small 
bread volume with a firm and dense crumb structure (98). A 
higher oil absorption capacity of composites leads to a better 
flavour, mouthfeel, texture of the food and a longer shelf life, 
especially of bakery products (89,92). 

The bakery products made from composite flour were of 
good quality with improved nutritional value and appear-
ance. Despite the fact that composite flour products have 
some similar properties to wheat flour products, there were 
differences between the two derivatives in terms of textural, 
functional and sensory properties. Previous studies empha-
sised the need for additional efforts to improve the bread 
quality with higher additions of gluten-free flours. The gluten 
content and the viscosity of the starch determine the 
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influence of alternative flours on the wheat addition and thus 
on the baking quality. Physical properties of the formulated 
bread, particularly loaf volume, mass and specific volume, are 
bread quality attributes that evaluate the effect of the alter-
native flours (89). The addition of alternative flours reduced 
the amount of gluten in the composite flours, resulting in re-
duced carbon dioxide retention and ultimately a reduction 
in the height, loaf volume and specific volume of the com-
posite breads. Moreover, the loaf volume decreased with an 
increasing amount of legume flours, as the comparatively 
larger particles of legume flour can penetrate gas cells during 
dough expansion. The size of the baked dough, the moisture 
and the amount of CO2 gas diffused from the loaf during bak-
ing determine the bread mass. Composite breads have a 
higher loaf mass due to the lower CO2 retention. The specific 
volume has been recognised as a credible measure of loaf 
size. The minimum hydration capacity relevant for composite 
flours could be the reason for the lower specific volume (93). 
Greater quantities of open crumb pores and larger crumb cell 
walls were observed with the increasing amount of pulse 
flour. Bread hardness increased with the higher proportion 
of pulse flour due to the increased starch retrogradation (79).

Physical parameters related to the cookies are mass, 
thickness, diameter and spread ratio. A higher amount of al-
ternative flours with the ability to increase the amount of wa-
ter-absorbing fibre reduced the spread factor of the cookies, 
resulting in cookies with a smaller diameter and higher thick-
ness. The robust protein interaction between the individual 
flours of the composite mixture determined the hardness of 
the cookies (46). In addition, the interaction between gluten 
and fibre affected the hardness of the cookies, as the dietary 
fibre content increased the water absorption capacity and 
influenced the gluten development time. Higher amounts of 
date seed powder reduced the hardness of the cookies due 
to the high dietary fibre content (158). The spread ratio of the 
cookies and their fat content are known to be directly core-
lated. The researchers observed a reduction in the spread ra-
tio of the cookies by adding crude lycopene, a fat-soluble 
component, which reduced the amount of free fat available 
for wheat flour. Furthermore, the addition of tomato powder 
was observed to increase the hardness of the cookies due to 
the increase of fibre content (179). Previous studies reported 
increased mass in composite cookies due to the higher mois-
ture content of fenugreek and higher bulk density of the flour 
mixtures. Moreover, the higher protein content of oats and 
fenugreek reduced the spread ratio of the cookies (140). 

The cooking properties determined the quality of the de-
veloped pasta. Fractionated whole wheat and bambara 
ground composite pasta had a shorter optimum cooking 
time (OCT) than the control pasta made from unfractionated 
flour. Fractionated flours had shorter OCT because they con-
tained larger particle sizes. Larger particles, particularly germ 
and fibre, facilitate water absorption and reduce the prepa-
ration time (180). Higher insoluble dietary fibre (IDF) amounts 
prevent complete gelatinisation of starch, as IDF competes 

with starch for water and ultimately shortens cooking time 
and thus saves energy. Cooking loss is another critical quality 
parameter for pasta. The higher the cooking loss, the lower 
the quality of the pasta. Smaller quantities of alternative 
flours cannot considerably weaken the gluten-starch matrix 
and therefore have no significant effect on cooking loss. The 
addition of high-fibre alternative flours reduced the hardness 
of the pasta by weakening the gluten matrix of the pasta 
structure (181). Some research on the successful use of com-
posite flours in the food industry is shown in Table 1 (19,45–
47,55–57,66,79,82,89,92–94,98,100–102,107,108,115,137,138, 
140,142,147,148,151,158,168,179,180,182–198). 

BIOAVAILABILITY AND BIOACCESSIBILITY 
STUDIES OF WHOLE WHEAT-BASED 
FUNCTIONAL FOODS

There is a growing trend of consumer preference for na-
tive food components and natural products over synthetic 
compounds to achieve the desired health benefits through 
a regular diet (199). Despite the presence of numerous bioac-
tive molecules in foods, the consumption of these foods is 
not necessarily associated with favourable health effects 
(200). Furthermore, not all bioactive substances are utilized 
efficiently by the organisms (199). Therefore, studies to eval-
uate the bioactivity of functional foods and their nutritional 
efficacy are essential (199,200). Factors affecting the efficacy 
of bioactive compounds in foods include their steadiness in 
the food matrix, bioavailability, metabolomics and nutrige
nomics. The crucial characteristic of any food formulation is 
the bioavailability of its nutrients (199). From nutritional point 
of view, bioavailability is defined as the proportion of a nutri-
ent that is available either for physiological activities or stor-
age. First, a food component must be released from the food 
matrix and digested to become available. For this reason, bi-
oaccessibility is the preliminary step of bioavailability. It is 
defined as the amount of nutrients released from the food 
matrix into the gastrointestinal tract and enter the blood-
stream in a suitable form for absorption (199,200). Bioavaila-
bility and bioaccessibility studies of whole wheat-based func-
tional foods are listed in Table 2 (47,82,93,141,147,151,201–209). 

CONCLUSIONS
Composite flour technology plays a vital role in improving 

the economic status of a country by saving the foreign ex-
change provided for wheat import and promoting the local 
agriculture by using indigenous crops, which increases rural 
employment and income. Partial substitution of wheat flour is 
the most feasible approach of the composite flour technology 
because it can complement the nutritional profile of wheat. 
Recently, consumer interest in non-wheat flour has increased 
due to its ability to ameliorate non-communicable diseases, 
which is due to the presence of macronutrients, micronutrients 
and phytochemicals in significant amounts. The results of re-
search studies have shown that the deficiency in micro- and 
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Table 1. Application of composite flours in food industry

Product Composite flour Acceptable
ratio

Specific nutritive properties Specific functional properties Ref.

Bread Whole wheat/
yellow pea

95:5 Increased ash and protein content of the 
flour mixture reported due to the 
incorporation of yellow pea

Improved rheological properties (i.e. 
handling, mixing and pasting 
properties) compared to whole wheat 
flour dough 
The specific volume and bread quality 
are comparable with whole wheat bread

(79)

Whole wheat/acha/
pigeon pea/date 
palm fruit sugar

60:20:20:100 Increased protein, crude fibre and 
mineral content (i.e. Na, K, Ca, Mn, Zn)
Considerable phytate content and lower 
amount of oxalate
Low glycaemic index

Reduced specific volume, volume and 
height, and increased mass (i.e. denser 
bread) 

(93)

Whole wheat/
watermelon seed 

97.5:2.5 Increasedprotein and fibre content and 
lower carbohydrate and ash content
Increased minerals (i.e. iron, 
phosphorous and magnesium)
Lower tannin and oxalate content 

Improved loaf mass, volume and 
decreased specific volume

(182)

Whole wheat/sweet 
lupine

75:25 Increased protein and mineral content 
(specifically calcium and zinc)

– (183)

Whole wheat/
chickpea

60:40 Reduced glycaemic response Reduced specific volume (82)

Whole wheat/
cassava/green gram

90:5:5 Increased fat, protein and fibre content. Increased loaf mass, reduced volume 
and specific volume, sensory properties 
comparable to 100 % whole wheat 
bread 

(89)

80:10:10 Elevated ash, fat, protein and fibre 
content.

Increased loaf mass, volume and specific 
volume. Comparable with 100 % wheat 
bread

Whole wheat/
chicken meat 
powder/amaranth/
oregano/bay

59.50:30: 
10:0.5

Enhanced antioxidant activity and 
storage stability

Enhanced overall acceptability and 
structural integrity during storage 
compared to whole wheat bread

(142)

Whole wheat/chia 
seed/quinoa/
amaranth

67:10:4:19 Increased soluble and insoluble dietary 
fibre, total dietary fibre, ash and protein 
content
Reduced caloric value and GI

Specific volume, shape ratio and crumb 
structure 100 % comparable to whole 
wheat bread

(151)

Whole wheat/
cocoyam/bambara 
ground

70:18:12 Elevated fibre, protein and ash content Comparable with 100 % whole wheat 
bread with respect to sensory properties

(184)

Whole wheat/
mutamba fruit flour

95:5 Improved bioactive content and 
reduced caloric value in the bread

Loaf volume reduced with the increasing 
amounts of substitution

(185)

Whole wheat/
brown seaweed

96:4 Increased ash and total dietary fibre 
content

Soft and chewy bread with no 
significant aftertaste

(186)

Whole wheat/red 
seaweed

98:2 Increased ash, protein and total dietary 
fibre content

Whole wheat/red 
kidney bean/
defatted coconut 
flour

90:5:5 Increased protein, ash, fat, fibre, phytate, 
oxalate and tannins content

Hard crumb texture (98)

Whole wheat/
sorghum/millet 
(prefermented in 
the presence of 
exopolysaccharides)

50:50 Enhanced nutritional value.
Reduced GI

Hard texture and brown coloured crumb 
structure

(45)

Whole wheat/
cassava

90:10
80:20

Increased ash content Promoted gumminess,
cohesiveness and resilience of bread

(100)

Whole wheat/
cocoyam

Acceptable: 
85:15

Increased content of fibre, ash and fat Reduced textural attribute of bread due 
to the reduction of dough elasticity with 
the increasing amounts of substitution

(107)

Most 
acceptable:

95:5
Whole wheat/
vegetable paste 
(mushroom/
cauliflower/pea)

85:15 Increased ash, protein and total phenolic 
content
Enhanced antioxidant activity

Reduced loaf volume and increased 
hardness 

(108)



A. WEERARATHNA and M.A.J. WANSAPALA: Functional Food with Whole Wheat-Based Composite Flour

October-December 2024 | Vol. 62 | No. 4434

Product Composite flour Acceptable
ratio

Specific nutritive properties Specific functional properties Ref.

Whole wheat/
moringa leaf 
powder

95:5 Increased ash, protein, fibre content and 
calories. Calcium, potassium, 
magnesium, zinc contents and 
anti-oxidant capacity improved

Increased gumminess and reduced 
hardness and springiness of bread

(137)

Flat 
bread

Whole wheat/
stabilised rice bran/
undamaged- 
stabilised-
debittered wheat 
germ

75:10:15 Increased protein, ash and total dietary 
fibre content and lowered starch 
digestibility

Improved water absorption capacity, 
dough mixing and handling properties

(187)

Whole wheat/
extruded finger 
millet

80:20 Increased dietary fibre, protein, iron and 
calcium

Improved extensibility and reduced 
resistance to extension (i.e. soft and less 
firm flatbread)

(188)

Whole wheat/
barley

80:20 Increased content of ash, protein, 
β-glucan and energy and
reduced carbohydrate content

Improved water absorption capacity, 
dough development time and reduced 
dough stability

(57)

Whole wheat/
fenugreek gum 

99.25:0.75 Increased moisture content Sensory qualities similar to 100 % whole 
wheat flatbread.
Excellent pliability and softness 
observed up to 2 days of storage

(189)

Whole wheat/
barley 

75:25 Increased crude fibre, ash content and 
reduced fat and protein content
Low glycaemic index 

No significant difference in sensory 
properties with up to 25 % barley flour 
addition 
Reduced extensibility and force to tear

(55)

Whole wheat/
broken rice flour

80:20 Higher digestible starch and lower 
resistant starch 
Increased GI

Dough development time and stability 
increased
Reduced shrinkage and bake loss

(19)

Whole wheat/
sorghum/pearl 
millet

40:30:30 Reduced GI Improved hardness and stiffness (47)

Whole wheat/
spinach

92.5:7.5 Increased protein, ash, fiber, potassium, 
calcium and iron content

Reduced water absorption, dough 
development time and stability
Enhanced hardness, springiness and 
chewiness
Reduced puffed height

(138)

Cookies Whole wheat/
common bean/
pumpkin

75:15:10 Increased protein, fat, ash and crude 
fibre contents

Reduced lightness and specific volume
Increased spread ratio

(92)

Whole wheat/pearl 
millet/sorghum

30:40:30 Reduced GI – (47)

Whole wheat/horse 
gram flour

75:25 Enhanced nutritional value Increased spread ratio and
reduced mass, diameter and thickness
No adverse effect on the overall 
acceptability

(94)

Whole wheat/soy 
okara/tigernut

60:20.98: 
19.02

Increased fibre ash, magnesium, iron 
and sodium content

No significant difference in mass, 
diameter, height, appearance, 
mouthfeel, crunchiness and crispiness
Significant difference in spread ratio and 
thickness

(190)

Whole wheat/sorrel 
seed protein 
isolate/cassava flour

85:5:15
70:10:20
55:15:30

Significantly increased crude protein, 
fat, fibre, ash, mineral content
Reduced carbohydrate content
Increased mineral content with 
increased substitution

No significant difference in the sensory 
attributes of cookies, except crispiness 
at all level of inclusion
Improved pasting and functional 
properties 

(101)

Whole wheat/
unripe plantain/
germinated 
pumpkin seed 

90:5:5 Significantly increased crude protein, 
fat, fibre and ash content 
Reduced carbohydrate.
Increased tannins, oxalates and phytates

No significant difference in spread ratio 
compared to whole wheat cookies

(191)

Malted whole 
wheat/malted 
coarse grain (barley, 
sorghum, pearl 
millet) blend/
defatted soy flour

50:40:10 – Enhanced functional properties (192)

Table 1. continued
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Product Composite flour Acceptable
ratio

Specific nutritive properties Specific functional properties Ref.

Whole wheat/pearl 
millet flour

40:60 Increased fat, fibre, iron, calcium and 
phosphorus content 

Significantly reduced mass, diameter 
and spread factor.
Improved hardness, chewiness, 
gumminess, breaking and cutting 
strength

(46)

Whole wheat/
cladode flour

75:25 Increased total phenolic content
Enhanced radical scavenging activity 

No significant difference in mass, 
diameter and hardness
Significant difference in thickness and 
spread ratio

(193)

Whole wheat/date 
seed powder 

92.5:7.5 Enhanced total phenolic content, 
flavonoids and antioxidant capacity

Enhanced crispiness (158)

Whole wheat/
tomato powder

98:2 Enhanced antioxidant activity, reducing 
power, total carotenoid and total 
phenolic content
increased ash and fat content

Better rising ability of cookies due to 
reduced spread ratio 

(179)

Whole wheat/crude 
lycopene

99.9:0.1

Whole wheat/
germinated 
pumpkin seed flour

70:30 Increased ash, protein, fat, mineral (i.e. 
calcium, magnesium iron and zinc) and 
total dietary fibre (i.e. soluble and 
insoluble) content 

Reduced diameter and thickness
Increased spread ratio

(194)

Whole wheat/
germinated 
fenugreek seed 
flour/oats

70:10:20 Increased protein, crude fibre, fat, ash, 
mineral (i.e. calcium, magnesium, zinc 
and iron) and energy content
Reduced carbohydrate content
Moderately increased anti-nutrient 
content including phytic acid and 
condensed tannins 

Reduced spread ratio and crispiness
Improved mass

(140)

Whole wheat/
saffron 

99:1 Enhanced resistant starch content, total 
phenolic and DPPH radical scavenging 
activity

Improved lightness, hardness and 
spread factor

(147)

Whole wheat/
quinoa seed flour

60:40 Nutritionally acceptable ratio due to 
presence of the highest protein, fibre 
and ash contents
Reduced carbohydrate and fat content 

Improved spread ratio Reduced width 
and diameter

(66)

90:10 Organoleptically highest acceptable 
ratio
Increased protein, fibre and ash content 
compared to 100 % whole wheat 
biscuits

Reduced spread ratio and diameter
Improved width

Whole wheat/
avocado peel

95:5 Increased protein, fibre, ash (i.e. 
potassium, calcium, sodium, magnesium 
and iron)

Enhanced crispiness (168)

Whole wheat/
amaranth/nopal/
oyster mushroom

50: 30:15:5 Increased ash, fibre and protein
Enhanced total phenolic, total flavonoid 
content and antioxidant activity

No adverse effect on sensorial attributes (115)

Noodles Whole wheat/
sorghum/chia seed

– – Improved cooking qualities, water 
absorption capacity and mass of the 
noodles
Reduced cooking losses

(195)

Whole wheat/
unripe banana flour

55:45 Increased fibre, and resistant starch 
content

Reduced cooking time
Improved water absorption and 
rehydration ratio

(196)

Whole wheat/
foxtail millet/
mushroom/rice 
bran

40:50:5:5 Increased ash, protein, fat and fibre 
content
Reduced carbohydrate content
Improved amino acid profile
Excellent source of calcium, iron and 
phosphorous

Improved organoleptic properties 
including flavour and taste

(197)

Whole wheat/
potato peel flour

60:40 Possess considerable amount of energy
Improved nutritive value

Optimum ratio for 3D printed noodles 
with the adequate strength to withstand 
post-processing steps, better pasting 
properties, flowability and printability
Acceptable sensory properties.
Cooking quality and textural properties 
comparable to the commercial product

(198)

Table 1. continued
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Product Composite flour Acceptable
ratio

Specific nutritive properties Specific functional properties Ref.

Whole wheat/oat 
flour

70:30 – Improved hardness and chewiness
Increase in hardness of noodles with the 
increasing dough sheet thickness.
Reduced cooking time
Decrease in cooking time with the 
reduced thickness of the noodle

(56)

Pasta Whole wheat/
bambara 
groundnut

80:20 Increased fat, protein, ash contents and 
reduced carbohydrate and fibre content 
with the reduction of particle size
Reduced total phenolic content and 
increased antioxidant activitiy in 
fractionated flour pasta with the 
reduction of particle size

Increased optimum cooking time with 
reduced particle size
Comparatively higher scorings for 
sensory attributes in terms of colour, 
taste, mouthfeel and overall 
acceptability of fractionated flour pasta 
with finer particles

(180)

Cakes/
muffins

Whole wheat/sweet 
potato/pigeon pea

70:10:20 Increased fibre, protein and ash (i.e. Ca, P 
and K) content
Reduced fat content
Increased tannin and trypsin inhibitor
Reduced phytate content

Organoleptically comparable with the 
whole wheat cakes 

(102)

Whole wheat/
ungerminated 
flaxseed

85:15 Increased protein, ash and fibre content Improved softness
Reduced mass and volume (148)

Whole wheat/
germinated
flaxseed

90:10

Table 1. continued

Table 2. Bioavailability and bioaccessibility studies on whole wheat-based functional foods

Product Composite flour Study 
type

Outcome Ref.

Bread Whole wheat/green coffee In vitro Increased bioaccessibility of phenolic compounds compared to control 
whole wheat bread

(201)

Whole wheat/quinoa In vivo Reduced triglyceride, total cholesterol, low-density lipoprotein (LDL) 
and very-low-density lipoprotein (VLDL) levels
Reduced GI (42.0) compared to control (69.20)

(202)

Whole wheat/amaranth/acha In vitro Enhanced metal chelating and radical scavenging ability
Higher α-amylase and α-glucosidase inhibitory activity
Reduced GI

(203)

Whole wheat/acha/ pigeon pea/
date palm fruit sugar

In vivo Reduced GI
Reduced postprandial blood glucose response

(93)

Whole wheat/chickpea In vivo Reduced glycaemic response (82)
Whole wheat/quinoa/
chia/amaranth

In vitro Reduced GI (85.0) compared to control (95.0)
Reduced protein digestibility 
Increased nutritional index

(151)

Flatbread Whole wheat/moringa/
C4H2FeO4

In vitro Higher mass ratio of bioaccessible iron and calcium (2.75 and 50.09 
mg/100 g) than control (0.16 and 53.0 mg/100 g)
Higher mass ratio of bioaccessible carotene and β-carotene (0.203 
mg/100 g and 183.04 µg/100 g) than control [not detected (ND)]

(204)

Whole wheat/
moringa/FeSO4

Higher mass ratio of bioaccessible iron and calcium (2.54 and 47.19 
mg/100 g) than control (0.16 and 53.0 mg/100 g)
Higher mass ratio of bioaccessible carotene and β-carotene (0.226 
mg/100 g and 190.86 µg/100 g) than control (ND)

Whole wheat/
amaranth leaves/ 
C4H2FeO4

Higher mass ratio of bioaccessible iron and calcium (3.77 and 71.39 
mg/100 g) than control (0.16 and 53.0 mg/100 g)
Higher mass ratio of bioaccessible carotene and β-carotene (0.157 
mg/100 g and 158.91 µg/100 g) than control (ND)

Whole wheat/
amaranth leaves/
FeSO4

Higher mass ratio of bioaccessible iron and calcium (3.87 and 75.0 
mg/100 g) than control (0.16 and 53.0 mg/100 g)
Higher mass ratio of bioaccessible carotene and β-carotene (0.150 
mg/100 g and 156.28 µg/100 g) than control (ND)

Whole wheat/
chickpea/FeSO4

Higher mass ratio of bioaccessible iron (3.39 mg/100 g) than control 
(0.16 mg/100 g) 

Whole wheat/
chickpea/C4H2FeO4

Higher mass ratio of bioaccessible iron (2.16 mg/100 g) than control  
(0.16 mg/100 g) 
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certain macronutrients can be eliminated by the objectively 
formulated composite flour-based products. The inclusion of 
leafy, non-leafy vegetables, roots and tubers along with fruits 
in the composite flour formulations is expected to provide nu-
merous nutritional benefits. The phytochemicals available in 
these sources not only have a positive effect on health, but also 
improve the physicochemical properties of the final product. 
When the components with different properties are combined 
together in the formulation of composite flour, the rheological 
properties of the dough are improved in different ways. Since 
most of the aforementioned substances are underutilised or 
unidentified as highly nutritious sources, the use of these ma-
terials in composite flour formulations leads to a reduction in 
the cost of flatbread and other bakery products, thus ensuring 
the country’s national food security. The use of composite 
flours in the food industry has paved the way for the formula-
tion of products with significant nutritional, organoleptic and 
therapeutic properties. The appropriate quality and quantity 
of flour combinations can be determined according to product 
technology, consumer requirements and acceptance. Howev-
er, there is still much room for scientific research to evaluate 
the process modifications, novel methods and additional 
sources that can optimise the quality of the composite flour 
products. This will lead to the popularisation of the composite 
flour products and capturing a significant market in the near 
future due to their economic value, health benefits and nutri-
tional properties. 
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Outcome Ref.

Whole wheat/green gram/FeSO4 Higher mass ratio of bioaccessible iron and calcium (3.38 and 81.47 
mg/100 g) than control (0.16 and 53.0 mg/100 g) 

Whole wheat/green gram/
C4H2FeO4

Higher mass ratio of bioaccessible iron and calcium (2.43 and 81.14 
mg/100 g) than control (0.16 and 53.0 mg/100 g) 

Whole wheat/buckwheat In vitro Increased in vitro protein digestibility from 78 to 88 % with the addition 
of buckwheat flour

(205)

Whole wheat/spices (ajwain/ 
cumin/cardamom/fennel/
cinnamon/ginger/black pepper)

In vitro Enhanced protein digestibility 
Increased bioaccessibility of iron and zinc

(141)

Whole wheat/pigeon pea In vitro Reduced slowly digestible starch and increased resistant starch content
Reduced starch digestibility
Reduced predicted glycaemic index
High protein digestibility 

(206)

Whole wheat/fenugreek In vitro Reduced starch digestibility (27.12 %) compared to control (37.87 %)
Reduced protein digestibility (83.56 %) compared to control (68.18 %)

(207)

Whole wheat/sorghum/pearl 
millet

In vivo Reduced GI (25.40) compared to control (40.40)
Showed hypoglycaemic effects

(47)

Biscuits/
cookies

Whole wheat/sorghum/pearl 
millet

In vivo Reduced GI (27.50) compared to control (44.28)
Hypoglycaemic effects

(47)

Whole wheat/wheat germ/
coffee silver skin

In vitro Increased phenolic bioaccessibility compared to control whole wheat 
cookies 
Increased antioxidant bioaccessibility of cookies compared to control

(208)

Whole wheat/saffron In vitro Increased resistant starch content
Reduced starch digestibility

(147)
Whole wheat/buckthorn

Bagels Whole wheat/banana peel/
lavender

In vivo Reduced anxiety score among participants
Anxiolytic potential

(209)
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