getpdf NLM PubMed Logo https://doi.org/10.17113/ftb.59.02.21.6904  

Tamarix articulata Inhibits Cell Proliferation, Promotes Cell Death Mechanisms and Triggers G0/G1 Cell Cycle Arrest in Hepatocellular Carcinoma Cells

Abdullah Mohammad Alnuqaydan#*orcid tiny and Bilal Rah#orcid tiny

Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, GPO P. O. Box 6666, 51452 Buraidah, Saudi 

Arabia

 

Article history:

Received: 20 July 2020

Accepted: 21 March 2021

cc by

Key words:

Tamarix articulata, autophagy, apoptosis, cell cycle, antiproliferative activity

Summary:

Research background. From ancient times plants have been used for medicinal purposes against various ailments. In the modern era, plants are a major source of drugs and are an appealing drug candidate for the anticancer therapeutics against various molecular targets. Here we tested methanolic extract of dry leaves of Tamarix articulata for anticancer activity against a panel of hepatocellular carcinoma cells.

Experimental approachCell viability of hepatocellular carcinoma cells was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay after a dose-dependent treatment with the extract of T. articulata. Phase-contrast microscopy and 4’,6-diamidino-2-phenylindole (DAPI) staining served to analyse cellular and nuclear morphology. Immunoblotting was performed to determine the expression of proteins associated with autophagy, apoptosis and cell cycle. However, flow cytometry was used for the quantification of apoptotic cells and the analysis of cells in different phases of the cycle after the treatment with various doses of T. articulata. Additionally, acridine orange staining and 2’,7’-dichlorofluorescein diacetate (DCFH-DA) dye were used to analyse the quantification of autophagosomes and reactive oxygen species. 

Results and conclusions. Our results demonstrate that T. articulata methanolic extract exhibits promising antiproliferative activity with IC50 values (271.1±4.4), (298.3±7.1) and (336.7±6.1) µg/mL against hepatocellular carcinoma HepG2, Huh7D12 and Hep3B cell lines, respectively. Mechanistically, we found that T. articulata methanolic extract induces cell death by activating apoptosis and autophagy pathways. First, T. articulata methanolic extract promoted autophagy, which was confirmed by acridine orange staining. The immunoblotting analysis further confirmed that the extract at higher doses consistently induced the conversion of LC3I to LC3II form with a gradual decrease in expression of autophagy substrate protein p62. Second, T. articulata methanolic extract promoted reactive oxygen species production in hepatocellular carcinoma cells and activated reactive oxygen species-mediated apoptosis. Flow cytometry and immunoblotting analysis showed that the plant methanolic extract induced dose-dependent apoptosis and activated proapoptotic proteins caspase-3 and PARP1. Additionally, the extract triggered the arrest of the G0/G1 phase of the cell cycle and upregulated the protein expression of p27/Kip and p21/Cip, with a decrease in cyclin D1 expression in hepatocellular carcinoma cells.

Novelty and scientific contribution. The current study demonstrates that T. articulata methanolic extract exhibits promising anticancer potential to kill tumour cells by programmed cell death type I and II mechanisms and could be explored for potential drug candidate molecules to curtail cancer in the future. 

*Corresponding author: +966558764066
  +966506166275
  ami.alnuqaydan@qu.edu.sa
  b.rah@qu.edu.sa

 

#Both authors contributed equally

Search FTB


Follow us


 facebook 1 twitter bird_icon LI In Bug

 

FTB RSS Feed


QR Code


qrcode

We use cookies to improve our website and your experience when using it. Cookies used for the essential operation of the site have already been set. To find out more about the cookies we use and how to delete them, see our privacy policy.

I accept cookies from this site.

EU Cookie Directive Module Information