An electrochemical sensor is a compact analytical device in which an electrode is used as the transducer element (50, 51). Regarding the way in which the transduction process occurs, electrochemical sensors can be categorised as potentiometric, voltammetric or amperometric and impedimetric. Unlike optical sensors, they can be easily used in turbid specimens (52).
The performance of all electrochemical sensors is strongly influenced by the working electrodes. The desired redox reaction of the analyte at the bare electrode often involves slow electron transfer kinetics and, therefore, occurs at potentials substantially higher than its thermodynamic redox potential. To overpower this obstacle, a redox mediator is often added into the measurement scheme. The mediator acts as a signal transducer between the analyte and the electrode. Nano-engineered silver material has a great potential as a modifier due to excellent electrical conductivity and high catalytic activity. Furthermore, composites made of pure silver nanomaterial embedded into polymer matrices or core-shell bimetallic structures render a combination of useful properties, offering remarkable prospects in the construction of modified working electrodes. For this purpose, nanostructured silver is a material of great importance for the development of electrochemical sensors (53).
A current trend in the sensor field is directed towards solving analytical problems with the development of cost-effective, miniaturised and portable devices that could be operated in the field (54). A survey of the silver nanomaterial-based electrochemical sensors for food applications published in the last five years is listed in Table 1 (32,34,35,39,40,44,45,47,55-85). Selected examples of electrochemical sensors, both voltammetric and impedimetric, are shown in Fig. 3 (35).
Voltammetric sensors
Selective redox behaviour of an analyte of interest on the working electrode surface generates the current output, which is the basic principle of voltammetric sensor operation. During the measurement, the voltage of the working electrode can be changed linearly, in pulses or in cycles within a short time period, and the current produced by the system is measured. Detection established on the evaluation of current change at constant potential is also possible, which represents the basis of amperometric sensing. Operating in this mode, detected currents can be averaged over longer time periods, allowing more precise quantitative evaluation (86). The reviewed voltammetric sensors for detection of small molecules and chemical pollutants in food samples rely on the nanosilver-enhanced electron transfer processes of the modified working electrodes.
Fertilisers, including nitrite and phosphate anions, are common inorganic pollutants found in drinking water, soil and food. Controlling nitrite concentration is of significant importance, because its presence in the human body can cause conversion of haemoglobin into its non-oxygen carrier form, methaemoglobin (41). Usage of amperometry as a transduction pathway is the common denominator in nitrite-sensing devices, where selective redox behaviour is achieved at a single operating potential. Synergistic effect of AgNPs and multi-walled carbon nanotubes (MWCNTs) magnifies a glassy carbon electrode (GCE) working area, rendering favourable analytical performance towards nitrite oxidation (55). AgNPs/MWCNTs/GCE successfully produced a rapid signal output with continuous nitrite additions, which makes the proposed method suitable for nitrite determination in tap water. Another sensor including glassy carbon as an electrode material was proposed by Shivakumar et al. (45). An eco-friendly synthetic approach, using paper industry waste material, was developed to fabricate particles with average crystallite size of 30 nm. Amperometric experiments, conducted in 0.1 M phosphate buffer solution at a constant potential of +0.86 V, confirmed remarkable electrocatalytic properties of silver nanospheres towards nitrite oxidation. Simplicity in device fabrication, along with the green synthetic approach and high analyte selectivity, highlights this sensor for practical in-field application in water samples. Successive application of vacuum filtration and electropolymerisation was carried out to prepare a graphene-based/silver nanoparticle/poly(pyronin Y) hybrid paper electrode (56). High absorption coefficient of poly(pyronin Y) (poly(PyY)) decreases the electrooxidation potential of nitrite and expands the active electrode surface area, while silver nanoparticles enhance low electrical conductivity of the reduced graphene oxide (rGO). Flexible and free-standing rGO/AgNPs/poly(PyY) paper is the first reported graphene paper substrate for nitrite detection presented in the literature. Ammonium molybdate tetrahydrate (AMT)/silver nanowires (AgNWs) modified screen printed carbon electrode (SPCE) was employed in phosphate detection (57). The presence of one-dimensional nanowires causes faster electron transfer between the AMT and the SPCE, resulting in a significant increase in current response (fivefold) compared to the AMT/SPCE electrode.
Pesticides, by definition substances used to control pests, are xenobiotic compounds of utmost importance in the food safety sector (87). They can be classified by target organism (herbicides, insecticides, fungicides) or broadly by chemical structure (organic, inorganic, synthetic and biological), but mostly are grouped into organochlorines, organophosphates and carbamate families. Due to their large-scale use in agriculture, pesticides are the most abundant environmental pollutants. The presence of pesticide residues can seriously threaten human health and environmental safety, so continuous control of even low concentrations of pesticides in food-specific applications is mandatory (88).
First stage monitoring of pesticides in food and beverage matrices employed the usage of biosensors based on enzymes or antibodies as a recognition element. Acetylcholinesterase (AChE) is the most common enzyme used in electrochemical detection of organophosphorus and carbamate pesticides (89). These contaminants can cause irreversible esterase inhibition in the human central nervous system, leading to health issues. For selective electrochemical detection of monocrotophos and chlorpyrifos insecticides, a GCE modified with nitrogen-fluorine co-doped MoS2 monolayer decorated with AgNPs was proposed (58). To construct an effective biosensor, amino-functionalised carbon nanotubes (CNTs-NH2) were chosen for enzyme immobilisation onto the sensing platform, ensuring a high enzyme-to-substrate affinity (low Michaelis-Menten constant of 42 µM). Both cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) evaluation confirmed that the introduction of AgNPs has improved electron transfer kinetics and expanded the active surface area tenfold compared to bare GCE. Differential pulse voltammetry (DPV) responses of the AChE/CNTs-NH2/AgNPs-N-F-MoS2/GCE biosensor displayed linear decrement of the oxidation current with the increase of pesticide concentration, in accordance with the enzyme inhibition mechanism. The viability of this method was proven by selective pesticide determination in fruit samples. Zheng et al. (39) designed another AChE enzymatic sensor through chitosan layer-coated flexible nanosilver electrodes. The current of thiocholine (TCh) oxidation, as a product of the enzymatic reaction for indirect paraoxon detection, exhibited twofold better sensitivity when using an electrode made of nano- than microscaled silver powder. Feasibility of the proposed method in the analyses of vegetables, room temperature operation, as well as simplicity of fabrication through an eco-friendly approach, assert performance of this biosensor for practical purposes. Similar to pesticides, polychlorinated biphenyls (PCBs) are persistent organic pollutants known by their toxic health effects, once widespread for industrial purposes (90). Antibodies as a recognition element were successfully immobilised on the AgNPs/PANI/GCE via glutaraldehyde linker in a immunosensor designed for PCB 28 detection (59). Square-wave voltammetry (SWV) generated a linear electrochemical response to PCB 28, but also provided a signal for benzyl chloride and PCB 180 interfering agents. Another slight immunosensor disadvantage is the antibody immobilisation period (30 min) and PCB 28 incubation period (2 h), which can be further reduced by the usage of modified printed electrodes.
In response to enzyme instability and denaturation during storage, the second stage of pesticide monitoring resulted in the development of non-enzymatic sensors based on various silver-nanomaterial modifiers. Using chitosan-stabilised AgNP-modified GCE, the sensitivity of CV and adsorptive SWV methods in sensing the ethyl parathion (EPT) and pendimethalin (PDM) was compared by de Lima et al. (60). The aforementioned sensor was successfully applied for the detection of these two distinctive contaminants in diverse matrices – nitroaromatic herbicide (PDM) in mineral water, and typical organophosphate pesticide (EPT) in honey and lettuce samples. The accumulation step in voltammetric detection surpassed the problem of steep cathodic current decrement observed after successive CV cycles, thus lowering the detection limit and broadening the linear range. Among electrochemical detection methods, this modified electrode was the only one able to determine both pesticides. Moreover, the sensor has practical applications in various food matrices without requirement for the sample pretreatment step. In another study of paraoxon pesticide determination in onion samples, a stearic acid/nanosilver composite decorated GCE was used (61). Unlike the aforementioned biosensor-based device (39), the combination of biocompatible stearic acid and the electrocatalytic behaviour of AgNPs have shown a synergistic effect, thus enabling the development of an enzyme-free sensor. Differential pulse voltammetry was proven a satisfactory measurement technique, achieving the lowest paraoxon LOD value (0.1 nM) presented in the literature. Combining the AgNP electrocatalytic property with the oxygen-rich edge chemistry of a graphene nanoribbon platform, Ag@GNRs modified screen printed carbon electrode (SPCE) sensor was designed for selective methyl parathion (MP) pesticide determination (62). The lowest value of charge transfer resistance (71.4 Ω), obtained at the interface of Ag@GNRs/SPCE and electrolyte, compared with unmodified SPCE (460.1 Ω), GNR/SPCE (223.6 Ω) and Ag/SPCE (189.0 Ω), indicates synergistic interaction between the highly conjugated graphene-like material and AgNPs, which greatly reduces the overpotential and enhances the sensitivity towards MP. Well-defined amperometric responses for MP determination in cabbage, green beans, strawberry and nectarine were observed, with working range covering nano- and micromolar regions for each real sample. A novel voltammetric sensor, AgNP-supported solid amalgam electrode (SAE) for thiodicarb insecticide detection, was presented for the first time by Lucca et al. (40). Despite the inclusion of mercury, due to miniscule amounts involved, amalgam electrodes (91) adhere to the green chemistry approach. A CV study, recorded with AgNPs–SAE in Britton-Robinson buffer solution (pH=6.0), along with SWAdS voltammograms, revealed irreversible thiodicarb behaviour with a pronounced cathodic current peak at a potential of –0.64 V (40). Furthermore, linear dependence on the thiodicarb concentration from 1.05·10–7 to 1.52·10–6 mol/L, with 7.2·10–9 limit of detection, surpassed the lowest achieved values among all reported methods. Taking into account that this is only the fourth scientific publication regarding electrochemical methods for the voltammetric determination of thiodicarb, it is inevitable to emphasise this work as an esteemed scientific contribution.
Additive is a term which refers to chemicals used as adulterants for enhancement of the visual appeal or taste of some food products. Due to the toxic impact of some additives on human health, sustainable methods for efficient and rapid detection of these contaminants are necessary (92). Vanillin is an aromatic compound extensively used as a flavouring and fragrance enhancer, but high exposure to vanillin can cause liver and kidney damage (93). Li et al. (63) synthesised bimetallic Ag-Pd nanoparticles utilising green and in situ chemical reduction strategy, and demonstrated that the electrochemical response to vanillin at the Ag-Pd/GO/GCE sensor takes place at a lower potential than GCE modified with monometallic counterparts (Ag or Pd). DPV revealed the outstanding catalytic ability of the 3D nanohybrid material, enabling quantitative detection of vanillin at a concentration range of 0.02 to 45 µM. Azo-dyes (e.g. Sudan class of molecules, Orange II, Sunset Yellow) account for 60-70% of all synthesised colourants in the food industry. These compounds, characterised with at least one –N=N– functional group, are classified as carcinogens (94). GCE is the most important working electrode for selective determination of these food adulterants, due to its efficiency, accuracy and ability to enlarge the active surface area with various modifiers. Pani et al. (64) compared the sensitivity of AuNP, AgNP and Au-Ag core-shell composite material-decorated GCE, as a rapid voltammetric sensor for Sudan IV dye. Joining a green synthetic approach with the autoclave technology, obtained nanostructures were of the same composition, structure and properties in all batches of production. Hence, all three electrodes were found to be applicable in Sudan IV sensing, with current peaks proportional to dye concentration in practically the same linear range. GCE, modified with Ag-Cu nanoparticles anchored on reduced graphene oxide platform, was applied for determination of Sudan I in ketchup and chili powder (65). Amperometric current-time curves recorded in phosphate buffer solution (pH=6.5) at a constant potential of –0.112 V demonstrated the effective catalytic property of Ag-Cu/rGO/GCE reaching the lowest LOD value reported. Another food dye sensor was fabricated by drop-casting carbamazepine-functionalised silver nanoparticles (Cbz-AgNPs) onto the GCE (66). The bridging role of AgNPs leads to faster electron transfer between the donor (dye molecule) and acceptor (GCE), which is evident in the ability of the nanocomposite to boost the oxidation signals of Orange II and Rhodamine B dyes exceptionally, as compared to individual carbamazepine (Cbz)- or AgNPs-coated GCE (Fig. 3a). Achieved LOD values in the nanomolar range displayed high efficiency of this voltammetric sensor for the simultaneous detection of food dyes. Amaranth dye was chosen as an azo-dye model to study the electrochemical behaviour and degradation process utilising three graphene/TiO2–Ag nanocomposite-coated gold electrodes (denoted Au/GTA-5/10/15, regarding mass fraction in % of TiO2–AgNPs) (67). Linear sweep voltammetry (LSV) displayed the same obtained LOD value for all three electrodes (10–7 M), pointing out Au/GTA-10 in terms of considerably higher sensitivity towards the analyte. The same electrode exhibited first-order kinetics of amaranth degradation (2·10–5 M in 0.2 M KCl solution), tested by electrochemical polarization at +1.4 V vs Ag/AgCl. Molecularly imprinted polymers (MIPs) have been reported as excellent recognition elements for electrochemical sensors. An innovative sensor based on graphene oxide- and AgNPs-enhanced GCE was prepared using imprinting technology, with Sunset Yellow as the template molecule (68). Evaluated in the presence of Tartrazine, Amaranth, Brilliant Blue G and ascorbic acid as interfering agents, this sensor exhibited great selectivity towards the azo-dye, and was successfully applied for detection in soft drinks. GCE was also the working electrode of choice in the only example of chloramphenicol (CAP) detection in honey and milk powder samples (34). Decorated with Ag nanodendrites (immense specific surface area) anchored on carboxylic short-chain MWCNTs (fast electron transfer), the obtained sensor enabled ultrasensitive detection of CAP by linear sweep stripping voltammetry (LSSV) and CV techniques.
In the food safety sector, presence of pathogen bacteria needs to be strictly monitored. In order to detect S. aureus in water samples, bioassay system has been developed (69). Authors used two specific anti-S. aureus aptamer sequences. Primarily one, immobilised on streptavidin-coated magnetic beads, served as a capture probe, and the second one, conjugated to AgNPs, was the signalling probe. In the presence of target bacterium, a sandwich complex is formed which, after dissolution in 0.1 M HNO3, during anodic stripping DPV measurement produces distinctive AgNPs signal, sufficient to detect only one colony forming unit (CFU) in mL sample. L. monocytogenes, Gram-positive rod-shaped foodborne bacteria, have been successfully captured via L. monocytogenes antibodies attached to silver-ruthenium bipyridine complex core–chitosan shell hybrid nanoparticles (HNPs), chemically deposited onto GO nanosheets (70). At the applied potential of +0.55 V oxidation of bimetallic complex occurs, with measured change in amperometric response being directly proportional to the bacterial concentration.
Ascorbic acid (AA) is one of a few permitted substances in food and beverages (95). Due to its instability in acidic media, and upon oxygen/light exposure, AA degrades, which distorts food quality control via a colour change (96). Voltammetry is an increasingly popular method carried out in the analysis of AA in food samples, due to its simplicity alongside little or no sample preparation requirement. Diverse modifications of carbon paste electrodes have shown to stand out among other presented sensing tools in electrochemical AA detection (97). Applying a green synthetic approach through onion (71) and fig (72) extracts, Khalilzadeh’s group prepared AgNPs modifiers for fabrication of silver-carbon paste working electrodes (AgNPs/CPE). A simple sensor design, combined with SWV detection, revealed good selectivity for AA analysis in fruit juices, covering micromolar concentration ranges. Another simple sensor preparation for quick in-field vitamin C quantification in commercial fruit juices was described by Jadav et al. (73). Alternately adding carbon and silver conductive layers, authors fabricated the AA sensing area of silver/carbon SPE. In another study, coupling the electrodeposition of AgNPs (8 cycles in continuous cycling intervals from –0.7 to 1.9 V in 1.0 mM AgNO3 nitric acid solution), and quercetin from 0.5 mM solution in 0.1 M phosphate buffer (12 cycles of 0–40 mV potential scans), onto the graphene nanosheet-coated GCE, a new AA sensor was developed (74). DPV method provided three distinguished anodic peaks at the potentials of 10, 240 and 344 mV, corresponding to the simultaneous electrochemical oxidation responses to AA, uric acid and l-cysteine, respectively. Hydrogen peroxide is one of the most commonly used oxidising agents for the prevention of grocery spoilage. Thus, design of novel sensors for peroxide trace analysis is indispensable in the food quality sector. The rGO/AgNPs nanoarchitecture, coated onto the GCE via a Nafion layer, provided for the first enzymeless electrochemical selective detection of H2O2 (75). Using amperometry, the symbiotic effect of individual ternary hybrid nanostructure components significantly reinforced the sensor performance, enabling quantification of H2O2 in apple juice. A similar sensor, leaning on amperometry, GCE coated with a Nafion layer and reduced graphene oxide, this time modified with bimetallic Pd and Ag nanoparticles, was fabricated by Guler et al. (76). Due to the high loading and uniform dispersity of the prepared nanomaterial, the novel Nf/Pd@Ag/rGO-NH2 architecture showed noticeably improved catalytic properties towards H2O2. Unlike the previous reported sensor (LDR 1–10 μM), this sensor covers noticeably broader concentration ranges (2 to 19 500 μM).
In food quality analysis, freshness tests are based on detection of biogenic amines. In order to produce enzymatic or non-enzymatic amine sensors, adjustment of the GCE sensing surface with diverse nanostructured silver materials increases its practical analytical performance. Pioneering work in non-enzymatic sensing based on the TiO2-Ag/PPy nanocomposite material for amperometric tyramine (TA) detection in banana samples was done by Erdogan et al. (77). Under the optimum conditions (0.1 M phosphate buffer solution and the potential of +0.6 V), linearity over the 10–8–10–6 M concentration range, and LOD value lower than other TA detecting devices (2·10–8 M) revealed this nanocomposite-gelatin-coated GCE as an exemplary amine sensor. In a report by Kumar and Sundramoorthy (78), GCE coated with AgNPs-decorated nitrogen-doped SWCNT embedded in a Nafion layer (NF/Ag-N-SWCNT/GCE) served as a non-enzymatic sensor applicable for voltammetric urea detection in milk and water matrices. Butwong et al. (79) applied Ag-Ag2O-decorated MWCNT-modified GCE for the detection of histamine (HIS) in fish sauce. Based on the oxidation of the –NH2 group to the corresponding nitro compound during DPV measurements, the performance of the sensor was more stable and sensitive towards HIS (higher peak current shifted to a lower potential) than the CV data. As a result, determination of HIS, as a food spoilage indicator, at low concentration of 2 μg/L was achieved.
Mycotoxins are common food pollutants produced by organisms from the Fungi kingdom (98). Selective determination of mycotoxin in grape juice and wine samples was carried out applying MIPs (80). In this voltammetric sensor design, the GCE surface was coated with AgNPs, polyoxometalate (POM) and reduced graphene oxide layer, after which CV was used to imprint ochratoxin A (OCH). Synergistic effect between the AgNPs and POMs increased the rate of electrochemical reaction. Steep DPV troughs manifested ultra-high sensitivity of the MIP sensor towards OCH, with a detection limit of 1.6·10–11 M. For detection of aflatoxin M1 (AFM1) in milk samples, a modified GCE with long-term stability has been reported (44). The multilayered modifier film combines the advantages of α‐cyclodextrin (excellent electrical conductivity), graphene quantum dots (as mediator), and AgNPs as electrocatalytical agent for selective LSV recognition of AFM1. This sensor provided linearity from 0.015 to 25 mM concentration range. To develop a precise nonenzymatic immunosensor for electrochemical biosensing of cyanotoxin microcystin-LR (MC-LR), Zhao et al. (81) introduced silver@mesoporous silica (Ag@MSN) nanoparticles as a horseradish peroxidase-mimicking enzyme. Such engineered nanomaterial catalyses the reduction of hydrogen peroxide to produce a current signal inversely proportional to the MC-LR concentration. The biosensor performance manifests in a three orders of magnitude linear range, with a remarkable LOD value obtained in water samples (0.2 ng/mL), which is much lower than the concentration of 1 μg/L in drinking water, submitted by the World Health Organization (99).
Impedimetric sensors
The application of electrochemical sensors based on impedance analysis has grown during the past decade owing to rapid response and the high sensitivity of such devices (down to picomolar range). The role of AgNPs is signal enhancement, which makes this technique extremely useful to detect the analyte of interest during interactions with (bio)sensing platforms. Despite this fact, extensive sensor development has been limited mostly by the complexity of impedance analysis. Hence, in this article only a few impedimetric sensors have been reviewed regarding both quality and safety sectors.
As artificially synthesised oligonucleotide or peptide molecules, aptamers found their versatile purpose as highly selective recognition elements for target molecules in impedimetric sensors. An AgNP (large surface area)–nitrogen-doped graphene (excellent electrical properties)–aptamer system has shown to be an effective biosensing platform for impedimetric acetamiprid detection (82). Obtained impedimetric data displayed a linear picomolar concentration range, resulting in the lowest LOD value for pesticide sensing (3.3·10–14 M) among all presented electrochemical sensors.
Antibiotics are a broad family of chemically synthesised compounds used as a cure for bacterial infections. However, their intense usage in medicine, but also as feed additive, has led to negative effects on animal and human health. The omnipresence of antibiotics in meat and dairy products is a hot topic attracting the public attention nowadays. Therefore, the trace antibiotic levels in food products need to be strictly regulated (100). Combining Prussian blue (FeFe-PB) core with bimetallic CuFe shell, and coupling with silver nanoclusters via aptamer linkage in a one-step bio-inspired synthesis, an impedimetric aptasensor for bleomycin (BLM) antibiotic was developed (47). Owing to the formation of Fe(II)·BLM complex, the AgNCs/Apt@CuFe@FeFe aptasensor outperformed the CuFe@FeFe-based one, giving an extremely low detection limit of 0.0082 fg/mL towards BLM. Rosati et al. (83) inkjet-printed an aptamer-functionalised sensor for ampicilin detection in milk samples. Although impedance data display a linear range over more than 2 orders of magnitude, the LOD value is not sufficient for prescribed EU standards. Nonetheless, this preliminary work presents a simple and cheap microelectrode fabrication method which can be easily subjected to further sensor improvement.
The combination of two distinctive silver nanomaterials with electrochemical impedance spectroscopy (EIS) detection technique have been shown as a rapid and efficient way for detection of E. coli in water and eggshell matrices. In the first report, bovine serum albumin templated 3D Ag nanoflower impedance immunosensor was fabricated (35). Pathogen capturing has been conducted via antibody binding and the charge transfer resistance (Rct) value increased proportionally to the logarithm of 3.0·102–3.0·108 CFU/mL concentration range (Fig. 3b). High specificity of the modified Au electrode was proven towards C. sakazaki, MRSA, S. albus, L. easei and S. flexneri. In the second report, encapsulation of negatively charged E. coli surface with positively charged poly(dimethyldiallylammonium chloride) (PDDA) enabled the connection between bacteria and nanogold particles (84). Silver enhancement reaction resulted in the formation of E. coli/PDDA/AuNP@Ag complex, which improved the performance of a novel microfluidic chip for the impedimetric detection of bacteria. The prepared complex increased the solution conductivity and the double layer capacitance around the microelectrodes, showing practical application in eggshell solution and tap water specimens.
A novel biosensor based on hybridisation chain reaction (HCR) as an enzymeless strategy for rapid bacteria detection in milk samples was proposed (85). In the presence of the biomarker (highly specific fragment of S. aureus 16S rRNA), and with the aid of hairpin-decorated gold nanoparticles, silver nanowire formation between the adjacent interdigitalised electrodes occurs. The switch from isolated AuNP nucleation sites to the conductive silver feature leads to the electrochemical signal transduction pathway. Despite the higher achieved LOD value (50 CFU/mL) than the previously presented S. aureus immunosensor analogue (only 1.0 CFU per mL sample) (69), the authors would like to highlight the benefit of the HCR method as a polymerase-free detection strategy, as well as the merits of high sensitivity and fast response (analysis accomplished in less than 100 min), which can be useful for point-of-care applications. Combining silk fibroin with silver nanowires, interesting biocompatible, wearable and optically transparent flexible bioelectronics were prepared (32). A single-use food sensor can be easily embedded into the vinyl or plastic food packaging. H2S produced during chicken spoilage induces Ag surface corrosion, decreasing its electrical conductivity through the formation of sulfide film. This strategy can be also applied in colourimetric sensor design (see following chapter).